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Abstract 
This thesis addresses situated, embodied agents interacting in complex domains. It 
focuses on two problems: 1) synthesis and analysis of intelligent group beha,vior, and 

2) learning in complex group environments. 
Basic behaviors, control laws that cluster constraints to achieve particular goals 

and have the appropriate compositional properties, are proposed as effective primi- 
tives for control and learning. The thesis describes the process of selecting such basic 
behaviors, formally specifying them, algorithmically implementing them, and empir- 
ically evaluating them. All of the proposed ideas are validated with a group of up to 
20 mobile robots using a basic behavior set consisting of: safe-wandering, following, 
aggregation, dispersion, and homing. The set of basic behaviors acts as a substrate for 
achieving more complex high-level goals and tasks. Two behavior combination oper- 
ators are introduced, and verified by combining subsets of the above basic behavior 
set to implement collective flocking, foraging, and docking. 

A methodology is introduced for automatically constructing higher-level behav- 
iors by learning to select among the basic behavior set. A novel formulation of 
reinforcement learning is proposed that makes behavior selection learnable m noisy, 
uncertain multi-agent environments with stochastic dynamics. It consists of using 
conditions and behaviors for more robust control and minimized state-spaces, and 
a reinforcement shaping methodology that enables principled embedding of domain 
knowledge with two types of shaping functions: heterogeneous reward functions 
and progress estimators. The methodology is validated on a collection of robots 
learning to forage. The generality of the approach makes it compatible with the ex- 
isting reinforcement learning algorithms, allowing it to accelerate learning in a variety 

of domains and applications. 
The presented methodologies and results are aimed at extending our understand- 

ing of synthesis, analysis, and learning of group behavior. 

Thesis Supervisor: Rodney A. Brooks 
Title: Professor of Computer Science and Engineering 
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Chapter 1 

Overview of the Thesis 

One of the main goals of Artificial Intelligence (AI) is to gain insight into natural 

intelligence through a synthetic approach, by generating and analyzing artificial in- 

telligent behavior. In order to glean an understanding of a phenomenon as complex 

as natural intelligence, we need to study complex behavior in complex environments. 

Traditionally, AI has concerned itself with complex agents in relatively simple 

environments, simple in the sense that they could be precisely modeled and involved 

little or no noise and uncertainty. In contrast to traditional systems, reactive and 

behavior-based systems have placed agents with low levels of cognitive complexity 

into complex, noisy and uncertain environments. This thesis describes work that 

attempts to simultaneously scale up along both dimensions. The environmental com- 

plexity is scaled up by introducing other agents, and cognitive complexity is scaled 

up by introducing learning capabilities into each of the agents (Figure 1-1). 

This thesis addresses two problems: 

1. synthesis and analysis of intelligent group behavior 

2. learning in complex group environments 

Our ideas are based on the notion of basic behaviors, a means for combining 

constraints from the agent, such as its mechanical and sensory characteristics, and 

the constraints for the environment, such as the types of interactions and sensory 

information the agent can obtain, in order to construct an appropriate abstraction 

for structuring primitives for control. 

We will present a methodology that uses basic behaviors to generate various robust 

group behaviors, including following, homing, and flocking (Figure 1-2). We will also 

introduce a formulation of reinforcement learning based on behaviors as the unit of 

representation that allows a group of agents to learn complex tasks such as foraging 
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Figure 1-1: Traditional AI has addressed complex agents in simple environments while 
reactive and behavior-based approaches have dealt with simple agents in noisy and 
uncertain worlds. This work attempts to scale up along both dimensions simultane- 
ously, by addressing synthesis and learning of complex group behavior. 
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Following Homing Flocking 

Figure 1-2: This figure shows examples of real robot data for three different group 
behaviors: following, homing, and flocking. The robots, physically 12 inches long, 
are scaled down and plotted as black rectangles, with white arrows indicating their 
heading. The dark robots in the row of rectangles at the bottom shows the robots 
that were used in the experiment. Boxes on the lower right indicate frame numbers 
and the elapsed time in seconds for each of the runs. 
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Figure 1-3: An example of the foraging behavior of 7 robots, shown after 13.7 minutes 
of running. About eight pucks have been delivered to the home region, marked with 
a grey box. The two robots near home are following each other on the way to the 
drop-off. Other robots are wandering in search of additional pucks. 

(Figure 1-3). Finally, we will validate the proposed approaches with experiments on 

homogeneous groups of mobile robots. 

This chapter gives a brief summary of the novel approaches, of the experimental 

data, and of the implications of the thesis. The organization of the thesis is outlined 

at the end of the chapter. 

1.1     Synthesis and Analysis of Group Behavior 

This thesis is based on the belief that intelligent collective behavior in a decentralized 

system results from local interactions based on simple rules. Basic behaviors are 

proposed as a methodology for structuring those rules through a principled process of 

synthesis and evaluation. A behavior is a control law that clusters a set of constraints 

in order to achieve and maintain a goal. For example, safe-wandering is a behavior 

that maintains the goal of avoiding collisions while the agent is moving. 

We postulate that, for each domain, a set of behaviors can be found that are 

basic in that they are required for generating other behaviors, as well as being a 

minimal set the agent needs to reach its goal repertoire. The process of choosing the 

set of basic behaviors for a domain is dually constrained. From the bottom-up, the 



process is constrained by the dynamics of the agent and the environment. From the 

top-down, the process is constrained by the agent's goals as specified by the task. 

The combination of the two types of constraints helps to prune the agent's behavior 

space. 

We will use the example of group interactions between situated, embodied agents 

to illustrate the process of selecting a basic behavior set. The agents are mobile robots, 

embodied and endowed with specific mechanical, sensory, and effector constraints. We 

define the high-level goals of the system as consisting of collectively moving objects 

(pucks) in the environment in an efficient fashion. In this work, efficiency is defined in 

terms of minimizing energy by minimizing the amount of time required to complete 

a task or the number of moves required for each of the agents. 

An effective set of basic behaviors in the spatial domain should enable the agents 

to employ a variety of flexible strategies for puck manipulation, collection, and distri- 

bution. The effectiveness of such strategies depends on maximizing synergy between 

agents: achieving the necessary goals while minimizing inter-agent interference. 

We propose the following set of basic behaviors: 

• safe-wandering - minimizes collisions between agents and environment 

• following - minimizes interference by structuring movement of any two agents 

• aggregation - gathers the agents 

• dispersion - dissipates the agents 

• homing - enables the agent to proceed to a particular location 

According to our definition, the above behavior set is minimal or basic in that 

its members are not further reducible to each other. Additionally, we will show that 

they are sufficient for achieving the set of pre-specified goals. The described basic 

behaviors are defined with respect to the group. Other utility behaviors, such as 

grasping and dropping, can also be a part of an agent's repertoire. 

The basic behavior set is evaluated by giving a formal specification of each of the 

behaviors, and comparing the collection of those specifications to a formal specifica- 

tion of the set of global tasks required for the group. 

Once a basic behavior set is established, it can be implemented with a variety 

of algorithms. The first step in the verification of basic behavior algorithms is a 

comparison between the formal behavior specification and the formal correctness of 

the algorithm. We will argue that it is difficult to prove properties of the exact 

behavior of individual agents within a group, but it is possible to evaluate and predict 

the behavior of the ensemble as a whole. Using the notion of ensemble behavior, we 
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Figure 1-4: The simulator environment called the Interaction Monitor was used to 
validate the methodologies for synthesizing and analyzing group behavior described 
in the thesis. The agents are shown as black circles, with white markers indicating 
their heading. The large rectangle represents the agents' workspace. 

will propose group behavior algorithms that utilize a centroid operator that averages 

the inputs from multiple agents. This operator has statistical properties that allow 

analyzing and making predictions about the behavior of the group. 

This thesis provides detailed specifications and algorithms for each of the basic 

behaviors. Instead of analytical proofs, it provides empirical evaluations of the per- 

formance of each of the algorithms, based on the following criteria: 

• 

• 

• 

repeatability: how consistent is the behavior over different trials? 

stability: does the behavior oscillate under any conditions? 

robustness:  how robust is the behavior in the presence of sensor and effector 

error and noise? 

• scalability: how is the behavior effected by increased and decreased group sizes? 

The above criteria were applied to the data obtained by performing at least 50 

trials of each basic behavior. The experiments were performed on two different multi- 

agent environments, in order to minimize domain biases. The first environment was a 

multi-agent simulator (the Interaction Monitor) featuring up to 50 agents with local 

sensing and distributed, local control (Figurel-4). 

The second environment was a collection of 20 physical mobile robots equipped 

with local sensors and local control (Figure 1-5). Each of the robots is equipped 

with a suite of infra-red sensors for collision avoidance, puck detection, and stacking, 

and with micro switches and bump sensors for contact detection. In addition to the 



Figure 1-5: Some of the 20 mobile robots used to validate the group behavior method- 
ologies described in the thesis. These robots demonstrated group safe-wandering, 
following, aggregation, dispersion, flocking, and foraging. 

local sensors, the robots are equipped with radios and sonars for triangulating their 

position relative to two stationary beacons, and for broadcasting that position within 

a limited radius. The radios are used to detect other robots and gather data for local 

centroid computations. 

The basic behaviors, each consisting of one rule or a small set of simple rules, 

generated robust group behaviors that met the prespecified evaluation criteria. A 

small subset of the data is shown here, using the Real Time Viewer1, a software 

package for displaying and replaying each of the robots runs, plotting their positions 

over time, and displaying each frame and the elapsed time for each experiment. The 

figures show following (Figure 1-6), dispersion (Figure 1-7), and homing (Figure 1-8). 

More of the data, the algorithms, the specifications, and a detailed evaluation can be 

found in Chapter 4. 

Basic behaviors are intended as building blocks for achieving higher-level goals. 

The behaviors are embedded in an architecture that allows two types of combination: 

direct, by summation, and temporal, by switching (see figure 1-9). Both types of 

combination operators were tested empirically. A simple and robust flocking behavior 

was generated by summing the outputs of safe-wandering, aggregation, and homing 

(Figure 1-10). A more complex foraging behavior that involves finding and collecting 

pucks, was implemented by switching between safe-wandering, dispersion, following, 

1 Written by Matthew Marjanovic. 
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Figure 1-6: Continuous following behavior of 3 robots. The entire time history of the 

robots' positions is plotted. 
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Figure 1-7: Dispersion behaviors of 3 robots. 
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Figure 1-8: Homing behaviors of 5 robots. Four of the five robots reach home quickly 
and the fifth joints them about 60 second later. 

Figure 1-9: The control architecture for generating group behaviors consists of direct 
and temporal combinations (i.e. sums and switches) of subsets from a fixed basic 
behavior set. Direct combinations are marked with 0, temporal combinations with 

<g>. 
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Figure 1-10: Flocking behavior of 5 robots. The robots are started out in a nearly 
linear dispersed state. They quickly establish a flock and maintain it as the positions 
of the individual robots within the flock fluctuate over time. 
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Figure 1-11: An example of the foraging behavior of 6 robots. About eight pucks 
have been delivered to the home region, marked with a grey box. Two of the robots 
are dropping off pucks while the others are wandering in search of additional pucks 

to pick up and deliver home. 
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and homing (Figure 1-11). 

In addition to empirical testing of the behaviors and their combinations, the pro- 

posed methodology for generating decentralized group behavior was compared to a 

centralized, "total knowledge" approach. The experimental results showed that the 

simple, fully distributed strategies, applied to dispersion and aggregation tasks, con- 

verged only a constant factor slower than the centralized approach. 

1.2    Learning in Complex Group Environments 

The first part of the thesis introduces basic behaviors as a methodology for structuring 

simple rules into flexible and effective repertoires of group behavior. It also presents 

combination operators that allow for constructing and achieving higher-level goals. 

The second part of the thesis, starting with Chapter 6, describes a methodology for 

automatically combining basic behaviors into higher-level ones, though unsupervised 

reinforcement learning based on the agents' interactions with the environment. 

In reinforcement learning (RL) approaches the agent learns from external scalar 

reward and punishment. RL has been successfully applied to a variety of domains 

that have largely been modeled as Markovian, where the agent-environment inter- 

action can be described as a Markov Decision Process (MDP). However, the MDP 

assumption does not directly apply to the noisy and uncertain multi-agent environ- 

ments addressed in this work. Nonetheless, since external and internal feedback are 

the most natural sources of information for learning in situated agents, methods for 

applying RL to such complex domains are needed. 

The traditional formulation of RL problems in terms of states, actions, and rein- 

forcement required a reformulation in order to be applied to our domain. The notion 

of state as a monolithic descriptor of the agent and the environment did not scale 

up to the multi-agent domain used here, given the continuous and discrete aspects 

describing the agent (e.g., velocity, IR sensors, radio data), and the existence of many 

other agents in the environment. Furthermore, the most commonly used notion of 

actions was inappropriate since atomic actions were too low level and had effect too 

unpredictable and noisy to be useful to a learning algorithm. Finally, delayed rein- 

forcement and reward discounting were insufficient for learning in our domain. 

To make learning possible we propose a reformulation that elevates the level of 

system description from states and actions to conditions and behaviors. Behaviors 

are control laws that achieve goals but hide low-level control details. Using the notion 

of basic behaviors, a small basis set can be defined as used as a substrate for learning. 

When actions are replaced with behaviors, states can be replaced with conditions, 

the necessary and sufficient subsets of state required for triggering the behavior set. 
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Figure 1-12: The mobile robots used to validate the group behavior and learning 
methodologies described in this thesis. These robots demonstrated learning to forage 
by using group safe-wandering, following, and resting behaviors. 

Conditions are many fewer than states, thus greatly diminishing the agent's learning 

space and speeding up any RL algorithm. 

In addition to the use of behaviors and conditions, we propose two ways of shaping 

the reinforcement function in order to aid the learner in a nondeterministic, noisy, and 

dynamic environment. We introduced heterogeneous reward functions that partition 

the task into subgoals, thus providing more immediate reinforcement. Within a single 

behavior (i.e., a single goal), we introduced progress estimators, functions associated 

with particular conditions that provided some metric of the learner's performance. 

Progress estimators, or internal critics, decrease the learner's sensitivity to noise, 

minimize thrashing, and minimize the effect of fortuitous rewards by correlating some 

domain knowledge about progress with appropriate behaviors the agent has taken in 

the past. The details of the reformulation are given in Chapter 7. 

The proposed formulation was validated on the task of learning to associate the 

conditions and behaviors for group foraging with a collection of robots. The behaviors 

included the foraging subset of basic behaviors: safe-wandering, dispersion, and hom- 

ing, augmented with grasping and dropping, as well as with resting, a new behavior 

triggered by an internal "day-time night-time" clock. By clustering, the condition 

set was reduced to the power set of the following predicates: have-puck?, at-home?, 

night-time?, and near-intruder?. 

A smaller group of robots with more reliable hardware was used for the learning 

experiments. In terms of sensors and effectors, the robots were functionally identical 

to the first set (Figure 1-12), and the implemented basic behaviors and combinations 

were directly portable. 

Three learning algorithms were implemented and tested on the foraging task. The 
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Figure 1-13: The performance of the three reinforcement strategies on learning to 
forage. The x-axis shows the three reinforcement strategies. The y-axis maps the 
percent of the correct policy the agents learned, averaged over twenty trials. 

first was standard Q-learning, while the other two simply summed the reinforcement 

received over time. 

Q-learning received a reward whenever a robot dropped a puck in the home region. 

The second algorithm was based on the reinforcement received from heterogeneous 

reward functions based on reaching subgoals including grasping and dropping pucks, 

and reaching home. The third algorithm used reinforcement both from the heteroge- 

neous reward functions and from two progress estimators: one monitoring progress 

in getting away from an intruder, and the other monitoring progress toward home. 

The two progress estimators were found to be sufficient for making the given learning 

task possible and for consistent and complete learning performance. The absence of 

either one disabled the robots from learning the complete policy. 

The performance of each of the three algorithms was averaged over 20 trials (Fig- 

ure 1-13). The analysis of the learning performance showed that the parts that were 

not learned by the first two algorithms relied on the progress estimators and were 

successfully learned in the third case. Detailed analysis of the results is given in 

Chapter 8. 

1.3    Thesis Outline 

The preceding sections briefly summarized the contributions of the thesis. This sec- 

tion outlines the structure of the thesis and summarizes each of the chapters. 

Chapters 2 through 5 deal with synthesizing and analyzing group behavior. Chap- 

ters 6 through 8 address learning in multi-agent domains. Readers interested in mov- 
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ing directly to the details of the basic behavior approach should skip to Chapter 4. 

Those interested in going directly to the learning part of the thesis should skip to 

Chapter 6. All newly introduced, ambiguous, or frequently used terms are defined in 

Appendix B. The following are summaries of the chapter contents. 

Chapter 2 describes the biological, sociological, and pragmatic motivation behind 

this work. It describes the key issues in individual and multi agent control, and 

introduces and defines the main concepts of the thesis. 

Chapter 3 presents an overview of related work in Robotics, Simulation, Artificial 

Life, Distributed AI, and analysis of behavior. 

Chapter 4 introduces the basic behavior approach, describes the methodology for 

selecting basic behaviors, and illustrates the process by defining the basic behaviors 

for a collection of mobile agents interacting in the plane. The chapter describes 

the experimental environments, basic behavior specifications and algorithms, and the 

empirical data and the criteria for evaluating the performance of each of the behaviors 

as well as their efficacy relative to centralized alternatives. 

Chapter 5 describes two methodologies for combining basic behaviors into more 

complex, higher-level behaviors. The methodologies are demonstrated by combining 

the basic behaviors described in Chapter 4 to generate three different kinds of higher- 

level behaviors and evaluate their performance. This chapter also discusses methods 

for minimizing interference between behaviors within an agent. 

Chapter 6 motivates learning in situated agents and reviews the existing learning 

work based on the type of information being acquired by the agent. It then defines 

the group learning problem discussed in the thesis as an instance of reinforcement 

learning (RL) and overviews existing RL models and algorithms as applied to the 

situated agent domain. 
Chapter 7 describes a formulation of RL that enables and facilitates learning in 

our complex situated multi-agent domain. It introduces the use of behaviors and 

their conditions in place of actions and states, and describes a method for shaping 

the learning process through the use of heterogeneous reward functions and progress 

estimators. 
Chapter 8 presents the experimental robot environment and the learning task used 

to validate the methodologies proposed in Chapter 7. It describes the experimental 

design, the three learning algorithms that were implemented and compared, and 

discusses the results. In conclusion, the chapter addresses extensions of the presented 

work including the problem of learning social rules and multiple concurrent tasks. 

Chapter 9 summarizes the thesis. 
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Chapter 2 

Motivation and Issues in Agent 

Control 

Why study multiple agents? 

The motivation for this work comes from two quite different but complementary 

directions: the desire to understand and analyze natural systems and the need to 

design and synthesize artificial ones. 

2.1     Biological and Sociological Motivation 

Intelligence is a social phenomenon. Most intelligent animals live, obey the rules, and 

reap the benefits of a society of kin. Societies vary in size and complexity, but have 

a key common property: they provide and maintain a shared culture (Gould 1982). 

Culture is both a result and a cause of intelligent behavior. Intelligent creatures 

create and refine social rules in order to perpetuate the society. These rules constitute 

a culture which is communicated and shared by the society, and has important effects 

on its individual members (Gould 1982, McFarland 1987). 

Culture allows for genetic parsimony. Social interaction is used to transfer in- 

formation across generations, though social learning (McFarland 1985). Thus, less 

genetic investment is necessary, as fewer abilities need to be innate. Interestingly, as 

culture adapts, the growing complexity of social rules makes increased demands on 

individual intelligence, specifically on the ability to absorb and adapt to the culture. 

Humans are an extreme example of cultural complexity, requiring the longest learning 

and training developmental period of all animals (Gould 1982). 

Culture allows for faster adaptation.   As an alternative to evolution, culture al- 
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lows for testing and adapting social behaviors at a much shorter time scale. Social 

interactions can be created and destroyed within a single generation. For example, 

elephants have been shown to learn to avoid humans even if no harm was inflicted 

for generations, based on a distant cultural memory of past abuse (Gould 1982). 

Culture allows for Lamarckian evolution. It enables the direct transfer of learned 

information to future generations. A single individual's discovery can be adopted by 

an entire population and passed on. For example, an individual Japanese macaque 

monkey discovered washing of sweet potatoes. The practice was transmitted cultur- 

ally through the society and on to later generations (Gould 1982). 

Culture makes up for genetic deficiencies. Social interactions can compensate 

for individual limitations, both in terms of physical and cognitive capabilities. For 

example, group organizations, such as herds and packs, allow animals to attack larger 

prey, share information, and increase the chance of mating and survival (McFarland 

1985). 

In order to be understood, individual intelligence must be observed and analyzed 

within its social and therefore cultural context. In contrast to traditional AI, which 

addresses intelligence as an individual phenomenon, this work is based on the belief 

that intelligent behavior is inextricably tied to its cultural context and cannot be 

understood in isolation. The emphasis is similar to the principles of ethology, the 

study of animal behavior. Unlike the behaviorist branch of biology, which studies 

animals in controlled laboratory settings, ethology observes animals in their natural 

habitats. This research attempts to study intelligent behavior in its natural habitat: 

situated within a society. 

The complexity of culture results from the interactions among individuals. This 

research will focus on exploring simple social interactions which result in purposive 

group behaviors, with the goal of: 

1. understanding social and group behavior in nature, and 

2. developing a methodology for principled design of group behavior in artificial 

systems. 

The study of social agents and culture as a basis and structure of intelligent 

behavior is exploratory. Thus, the part of the thesis that addresses that domain is 

phenomenological, but hopefully also scientific in its attempt to understand natural 

phenomena and explain them in principled terms. 

16 



2.2     Pragmatic Motivation 

While nature offers challenges for analysis, engineering demands synthesis. In particu- 

lar, it strives for efficient, automated, reliable, and repeatable methods of synthesizing 

useful systems. 

Discoveries about systems of multiple interacting agents can be applied to many 

parallelizable problems. The idea of applying multiple computational (or physical) 

agents to a variety of distributed domains, from terrain exploration and mapping, to 

fire fighting, harvesting, and micro surgery, has been around for many years. How- 

ever, in spite of the potentially numerous applications, the distributed, multi-agent 

approach is an exception rather than the rule in most domains. 

Parallel, decentralized, non-hierarchical computation requires a paradigm shift 

(Resnick 1992). Regardless of the domain of application, this approach raises a num- 

ber of difficult issues. The particular few that motivate this research and are addressed 

in this thesis are: 

• What common properties and principles of organization are shared among dif- 

ferent domains of application of multi-agent systems? 

• How do the interactions of the individuals affect the behavior of the group? 

• How does the group get the job done? 

• How much does each individual need to know about the group, the task, the 

environment, and the other agents? 

• How much does each individual need to communicate with others in order to 

get the job done? 

• What are the simplest agents and rules we can use to generate complex and 

useful group behaviors? 

This research is aimed at finding common properties across various domains of 

multi-agent interaction. Identifying these properties allows for classifying group be- 

haviors into common categories and thus simplifies the process of both design and 

analysis. 

The next section defines key terms. 
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2.3    Key Issues, Terms, and Definitions 

2.3.1     Behaviors and Goals 

The notion of behavior is the main building block of this work. In the last few years the 

use of behaviors has been popularized in the AI, control, and learning communities. 

Approaches labeled "behavior-based AI" and "behavior-based control" are becoming 

mainstream, but behavior is yet to be cleanly defined and circumscribed. 

We define behavior to be a control law for reaching and/or maintaining a particular 

goal. For example, in the robot domain, following is a control law that takes inputs 

from an agent's sensors and uses them to generate actions which will keep the agent 

moving within a fixed region behind another moving object. In our work, a behavior 

is based on the sensory input vector only, and does not use internal state. We do not, 

however, exclude the use of state in the behavior definition, but reserve it for tasks 

where it is needed. 

The above definition of behavior specifies that a behavior is a type of an operator 

that guarantees a particular goal. In order to serve as general building blocks, basic 

behaviors must be capable of dealing with both attaining and maintaining goals. 

Attainment goals are terminal states; having reached a goal, the agent is finished. 

Such goals include reaching a home region and picking up an object. Maintenance 

goals persist in time, and are not always representable with terminal states, but 

rather with dynamic equilibria that must be maintained. Examples include avoiding 

obstacles and minimizing interference. Maintenance goals can usually be expressed 

as sequences of achievement goals but may require fine granularity of description. 

Situated agents can have multiple concurrent goals, including at least one attainment 

goal, and one or more maintenance goals. 

This thesis will attempt to show that behaviors are a natural, convenient, and 

efficient abstraction for control, planning, and learning for situated agents. Behaviors 

hide the low-level details of control that deal with precise control parameters. They 

allow for specifying robot tasks and goals in terms of higher-level primitives that cut 

down on the state space and are more intuitive for the user. Finally, they are a good 

basis for learning in noisy and uncertain situated domains. 

Ensemble, collective or group behavior is an observer-defined temporal pattern of 

interactions between multiple agents. Of the innumerably many possible such behav- 

iors for a given domain, only a small subset is relevant and desirable for achieving the 

agents' goals. 



2.3.2 Interaction 

Interaction is another foundational concept in this work. Typically, interaction is 

viewed as any influence that affects an agent's behavior. By this definition, an agent 

interacts with everything it can sense or be affected by, since all of its external (ob- 

servable) and internal state can have an impact on its actions. 

This work is largely concerned with the interaction that takes place between 

agents. Thus we propose a stricter definition: interaction is mutual influence on 

behavior. Consequently, objects in the world do not interact with agents, although 

they may affect their behavior. The presence of an object affects the agent, but 

the agent does not affect the object since objects, by definition, do not behave, only 

agents do. 

2.3.3 Domain Description 

Having defined the key concepts of the thesis, behavior and interaction, we turn to 

the specification of the domain being addressed. 

In order to focus and constrain the study of group behavior, this work focuses on 

interactions among situated, embodied agents. Some key constraints were imposed 

on the experimental domain in order to structure the exploration while still provid- 

ing sufficient variety of behaviors to study. The following are the key constraining 

properties: 

• Agents are homogeneous. 

• Agents do not use explicit models of each other. 

• Agents do not use directed communication or explicit cooperation. 

The reasons for and implications of each of the constraints are described and 

discussed in the following sections. 

Implications of Homogeneity 

This work focuses on groups of agents that are homogeneous in that they are situated 

in the same world and have the same goal structure (in our case translating into 

the same behavior set)1.   Homogeneous agents will also be referred to as similar, 

1 Furthermore, the agents in this work are embodied with similar dynamics. While the dynamics 
of simulated agents can be made identical, those of physical robots often vary enough to significantly 
affect their group behavior. The section on hardware limitations explains this in detail. The terms 
homogeneous and similar will be used interchangeably. 
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as distinct from identical, a property that can be ascribed to SIMD-style agents. 

Homogeneity has some important implications. 

Predictability 

The fact that all agents are similar makes their behavior predictable to one another 

in that they do not require internal explicit models of each other. This predictability 

can be used explicitly, by allowing agents to infer other agents' actions and use that 

information to make individual decisions, or implicitly, to simplify the control of each 

individual. This work focuses on the latter approach. For example, identical control 

laws can take advantage of inherent symmetries in spatial and more abstract domains. 

Homogeneity minimizes goal-related conflicts and resulting strategies such as de- 

serting and cheating. Furthermore, homogeneity allows for leaving much of the infor- 

mation about the world implicit. Although the agents in this work do not use explicit 

expectations about other agents' behavior, their decision process implicitly takes that 

information into account. 

Given their similarity, agents do not need identities and thus do not require abil- 

ities for identification. This presents a significant cognitive savings. As homogeneity 

and similarity greatly reduce individual cognitive requirements, they can be used for 

simplifying the synthesis and understanding of group behavior. 

Finally, homogeneity can result in increased global robustness through redun- 

dancy. Failure of any subset of agents should not seriously affect the system, since 

the agents are similar and thus interchangeable, and no particular agent or group of 

agents is critical for the accomplishment of the task. To preserve robustness, no spe- 

cific roles, such as leaders and followers are designated a priori. However, temporally 

(and spatially) local, replaceable leaders may emerge in various situations. 

2.3.4    Recognition of Kin 

Taking advantage of homogeneity depends on a critical property: the agents must be 

able to recognize other similar agents. We postulate that the ability to distinguish 

the agents with whom one is interacting from everything else in the environment is 

a necessary condition for intelligent interaction and group behavior. This ability is 

innate and ubiquitous in nature, and enables almost all creatures to distinguish others 

of their own kind, and more specifically to recognize kin from others (McFarland 

1985, McFarland 1987). 

It is important to note that species and kin recognition need not be explicit, i.e., 

the agent need not "know" or "be aware" that the other agent being recognized is 

kin, as long as its response to it is kin-specific.   For example, slime mold bases its 
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behavior on the concentration of slime produced by its kin. It cannot be said that 

it actively "recognizes" kin but it does act in species-specific ways which result in 

complex group behavior such as the construction of multi-cellular organisms (Kessin 

& Campagne 1992). Similarly, ants cannot be presumed to "know" that pheromones 

they sense are produced by their conspecifics. However, the appropriate responses 

to those pheromones result in the formation of trails and other complex structures 

(Franks 1989). 

Besides being biologically inspired, the ability to recognize kin is pragmatic as it 

allows even the simplest of rules to produce purposive collective behavior. 

2.3.5    Mental Models and Theory of Mind 

A dominant school of thought in cognitive psychology and AI is based on the premise 

that social interaction requires a theory of mind (Premack & Woodruff 1978). Namely, 

in order to engage in social discourse, agents need to have mental models of each 

other, attribute mental states to each other, understand each other's intentions, and 

maintain beliefs about each other (Dennett 1987, Cheney & Seyfarth 1990). Indeed, 

an entire field of theory of the mind rests on the necessity of inferring the internal 

workings of the mind of the agent(s) with whom one is interacting (Read & Miller 

1993). 

Maintaining a theory of mind is a complex task and requires a high computational 

and cognitive overhead (Gasser & Huhns 1989, Rosenschein & Genesereth 1985, Axel- 

rod 1984). Further, controversy surrounds its necessity, as work in both developmental 

psychology and ethology indicates that theory of mind is not necessary for a large 

repertoire of complex social interactions (Tomasello, Kruger & Rather 1992, Cheney 

& Seyfarth 1990, McFarland 1987, Gould 1982, Rosenthal & Zimmerman 1978). 

Research in developmental psychology has shown that young children engage in 

various forms of social interaction even before attaining the sense of self-awareness, a 

necessary component of constructing a theory of mind. Prior to this stage, occurring 

around the age of two, children are incapable of separating the internal and external 

perception of the world (Piaget 1962, Bandura & Walters 1963, Bandura 1971). Even 

after achieving self-awareness, as determined with the typical dot-and-mirror test 

(Asendorpf & Baudonniere 1993), around the age of two, children require a number 

of years before reaching the adult ability to form theories of mind (Bandura 1977, 

Abravanel & Gingold 1985). 

Much research has been aimed at testing whether primates have theories of mind. 

It has recently been demonstrated that certain species of monkeys, while involved in 

complex social and cooperative interactions, apparently do not form theories of mind 
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at all (Cheney k Seyfarth 1990, Cheney k Seyfarth 1991). In contrast, chimps appear 

to have more complex abilities and are indeed able to infer goals of their conspecifics 

(Cheney k Seyfarth 1990, McFarland 1987). How the internal models are represented 

and whether they are based on explicit or internal representations, remains open for 

further study (Gomez 1991). 

An Alternative to the Theory of Mind 

Exploring the existence and limits of theory of mind in biology is difficult. The type 

and amount of knowledge and representation that an animal brings to bear in its social 

interactions is impossible to circumscribe. In an ideal scenario the experimenter would 

be able to control for the type and amount of this knowledge and test the resulting 

behavior, in order to determine what is necessary and what is not. 

Computational and robot experiments allow us to do just that. The agents being 

experimented with are much simpler than those in nature, but it is exactly this 

simplicity that allows us to focus on the specific question of internal social models. 

In order to study the necessity of theory of mind, this work started from the bottom 

up, by exploring agents which had none at all. 

This work studies group behaviors resulting from the simplest interactions among 

the simplest of agents. The agents have no explicit models of each other, expectations, 

or intentions. The goal of this approach is to demonstrate what types of complex 

interactions can be achieved with such simple basic abilities. The results demonstrate 

that, particularly in homogeneous groups, significant amount of information about an 

individual's goals is reflected in the observable external state and behavior, and can 

be obtained with no direct communication (Cheney k Seyfarth 1990). Consequently, 

a theory of mind is not necessary for a broad spectrum of behaviors, nor is direct 

communication. More related issues in communication are discussed next. 

2.3.6     Communication and Cooperation 

Communication and cooperation have become popular topics in both abstract and 

applied multi-agent work (for example see Yanco k Stein (1993), Dudek, Jenkin, 

Milios k Wilkes (1993), Altenburg k Pavicic (1993), and others). Communication 

is the most common means of interaction among intelligent agents. Any observable 

behavior and its consequences can be interpreted as a form of communication so for 

purposes of clarity, we propose some clarifying definitions. 

Direct communication is a purely communicative act, one with the sole purpose of 

transmitting information, such as a speech act, or a transmission of a radio message. 

Even more specifically, directed communication is direct communication aimed at a 
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particular receiver. Directed communication can be one-to-one or one-to-many, but 

in both cases the receivers are identified. 

In contrast, indirect communication is based on the observed behavior, not com- 

munication, of other agents, and its effects on the environment. This type of com- 

munication is referred to as stigmergic in biological literature, where it refers to com- 

munication based on modifications of the environment rather than direct message 

passing. 

Both direct and indirect communication are practiced by most species in nature. 

For example, bees use signals, such as the waggle dance, with the sole purpose of 

transmitting information and recruiting. In contrast, they also use cues, such as the 

direction of their flight, which transmit hive information as a by-product of their 

other behaviors (Seeley 1989). 

Cooperation is a form of interaction, usually based on communication. Certain 

types of cooperative behavior depend on directed communication. Specifically, any 

cooperative behaviors that require negotiation between agents depend on directed 

communication in order to assign particular tasks to the participants. 

Analogously to communication, explicit cooperation is defined as a set of interac- 

tions which involve exchanging information or performing actions in order to benefit 

another agent. In contrast, implicit cooperation consists of actions that are a part of 

the agent's own goal-achieving behavior repertoire, but have effects in the world that 

help other agents achieve their goals. 

Having defined precise terminology, the communication and the resulting coop- 

eration constraints imposed on the experimental domain can now be described. In 

order to study the role of communication in a controlled fashion, and to explore how 

much communication is needed for the group behaviors described here, a minimalist 

approach was chosen. 

No directed, one-to-one communication between the agents was used in any of 

the experiments. Indirect communication was based on sensing the external state of 

neighboring agents, as well as sensing their density, and the effects of their actions. 

Direct communication was undirected, and limited to local broadcast: agents could 

transmit messages that could be received by others. However, the agents did not have 

the ability to choose the receivers of their messages, and thus to engage in directed 

communication. 

The undirected communication constraint affects the kinds of communication that 

can be implemented or can emerge in a multi-agent system. This work focuses on 

implicit cooperation without explicit task sharing. For example, instead of addressing 

the task of moving a large object by many agents, this work deals with distributed 

solutions to problems like moving numerous small objects, a task that can be solved 
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by a single agent, but can benefit from well-designed multi-agent solutions. For an 

alternative perspective, see Parker (1994). 

2.4    Issues in Agent Control 

This section describes and specifies the problem of controlling a multi-agent system 

by first overviewing approaches to individual agent control, and then discussing their 

extensions to multiple agents. 

Multi-agent research covers a vast array of natural and artificial systems, ranging 

from the brain to operating systems, and from bird flocks to collection of robots. For 

the purposes of this work, an agent is a process capable of perception, computation, 

and action within its world2. A multi-agent system consists of two or more such 

agents. 

The problem of multi-agent control can be viewed at the individual agent level 

and the collective level. The two levels are interdependent and the design of one 

is, or should be, strongly influenced by the other. However, multi-agent control has 

grown out of individual agent control, and this history is often reflected in the control 

strategies at the collective level. The next section describes the main approaches 

to individual agent control and their extensions and applicability to multi-agent do- 

mains. 

2.4.1     Individual Agent Control 

At one extreme of the agent control spectrum lie traditional top-down planner-based, 

deliberative strategies that use a centralized world model for verifying sensory infor- 

mation and generating actions in the world (Giralt, Chatila k Vaisset 1983, Chatila 

k Laumond 1985, Moravec k Cho 1989, Laird k Rosenbloom 1990). The information 

in the world model is used by the planner to produce the most appropriate sequence 

of actions for the task at hand. These approaches allow for explicitly formulating the 

task and goals of the system, and estimating the quality of the agent's performance. 

However, uncertainly in sensing and action and changes in the environment can re- 

quire frequent replanning the cost of which may be prohibitive for complex systems. 

Planner-based approaches have been criticized for scaling poorly with the complex- 

ity of the problem and consequently not allowing for reaction in real-time (Brooks 

19906, Brooks 1991c). 

2The world may or may not be physical. 
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Various attempts at achieving real-time performance have been proposed. Per- 

haps the most prominent are purely reactive bottom-up approaches which implement 

the agent's control strategy as a collection of preprogrammed condition-action pairs 

with minimal state (Brooks L Connell 1986, Agre k Chapman 1987, Connell 1990). 

These systems maintain no internal models and perform no search, but simply look- 

up and command the appropriate action for each set of sensor readings. They rely 

on a direct coupling between sensing and action, and fast feedback from the envi- 

ronment. Purely reactive strategies have proven effective for a variety of problems 

that can be well defined at design-time, but are inflexible at run-time due to their 

inability to store information dynamically (Mataric 1992a). 

The division between reactive and deliberative strategies can be drawn based on 

the type and amount of computation performed at run-time. Reactive, constant-time 

run-time strategies can be derived from a planner, by computing all possible plans 

off-line in advance. For example, situated automata achieve real-time performance by 

compiling all of the system's goals and the ways of their achievement into a language 

that compiles into circuits with constant-time computation properties (Rosenschein & 

Kaelbling 1986). In general, the entire control system of an agent can be precompiled 

as a decision graph into a collection of reactive rules ("universal plans") (Schoppers 

1987). While theoretically appealing, these strategies often scale poorly with the 

complexity of the environment and the agent's control system. 

Hybrid architectures attempt a compromise between purely reactive and deliber- 

ative approaches, usually by employing a reactive system for low-level control, and 

a planner for higher-level decision making. Hybrid systems span a large and diverse 

body of research. It includes reactive planning or reactive execution used in Reac- 

tive Action Packages (RAPs), higher-level primitives for planning which hide and 

take care of the details of execution (Firby 1987), and PRS (Procedural Reason- 

ing System), an architecture for flexible control rule invocation (Georgeff & Lansky 

1987), Schemas (Arkin 1989), and several others (Payton 1990, Connell 1991). These 

systems tend to separate the control system into two or more communicating but 

otherwise independent parts. In most cases, the low-level reactive process takes care 

of the immediate safety of the robot, while the higher level uses the planner to select 

action sequences. 

Behavior-based approaches are an extension of reactive systems that also fall be- 

tween the purely reactive and the planner-based extremes (Brooks 1986, Maes 1989). 

Although often confused in the literature, behavior-based strategies are strictly more 

powerful than purely reactive approaches since they have no fundamental limitations 

on internal state. While behavior-based systems embody some of the properties of 

reactive systems, and usually contain reactive components, their computation is not 
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limited to look-up. Other than centralized reasoning engine and representation, these 

systems may use different forms of distributed internal representations and perform 

distributed computations on them in order to decide what effector action to take 

(Mataric 1992a). 

A comparative classification of above methodologies based on domains of appli- 

cability has not yet been undertaken. 

2.4.2     Multi-Agent Control 

Having overviewed single-agent control, this section discusses how the described ap- 

proaches scale to multi-agent problems. 

Extending the planning paradigm3 from single-agent to multi-agent domains re- 

quires expanding the global state space to include the state of each of the agents. 

Such a global state space is exponential in the number of agents. Specifically, the size 

of the global state space G is: |G| = sa where s is the size of the state space of each 

agent, here assumed to be equal for all agents, or at worst the maximum for all agents, 

and a is the number of agents. Exponential growth of the state space makes the prob- 

lem of global on-line planning intractable for all but the smallest group sizes, unless 

control is synchronized and has SIMD form4. Further, since global planning requires 

communication between the agents and the controller, the bandwidth can grow with 

the number of agents. Additionally, the uncertainty in perceiving state grows with 

the increased complexity of the environment. Consequently, global planner-based ap- 

proaches to control do not appear well suited for problems involving multiple agents 

acting in real-time based on uncertain sensory information. 

At the other end of the control spectrum, extending the reactive and behavior- 

based approaches to multi-agent domain results in completely distributed systems 

with no centralized controller. The systems are identical at the local and global levels: 

at the global level the systems are a collection of reactive agents each executing task- 

related rules relying only on local sensing and communication. Since all control in such 

distributed systems is local, it scales well with the number of agents, does not require 

global communication, and is more robust to sensor and effector errors. However, 

global consequences of local interactions between agents are difficult to predict. 

The following table summarizes the properties of these two approaches to multi- 

agent control: 

3The planning paradigm includes includes traditional and hybrid systems. In terms of multi- 
agent extensions, hybrid systems fit into the planner-based category since their collective behavior 
is generally a result of a plan produced by a global controller. 

4A11 agents perform the same behavior at the same time. 
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centralized approaches distributed approaches 

can optimize global parameters can only optimize locally 

scale poorly scale well 

require global sensing use local sensing 

require global communication may not require communication 

can have a computational bottleneck no computational bottleneck 

impose hierarchical control use flat control 

not usually redundant are usually redundant 

Table 2.1: A comparative summary of typical centralized and distributed approaches. 

Centralized approaches have the advantage of potential theoretical analysis. In 

contrast, parallel distributed systems typically do not lend themselves to traditional 

analytical procedure. 

2.4.3    Analysis of Behavior 

This thesis focuses on fully distributed multi-agent systems, those in which the behav- 

ior of each agent is determined by its own control system rather than by a centralized 

controller. Such systems are by definition complex, because they are composed of a 

large number of elements, or because the inter-element interactions are not simple. 

Multi-agent systems consisting of several situated agents with uncertain sensors and 

effectors display both types of complexity. This section addresses how these properties 

affect their behavior and its analysis. 

The exact behavior of an agent situated in a nondeterministic world, subject to 

real error and noise, and using even the simplest of algorithms, is impossible to pre- 

dict exactly. By induction, the exact behavior of each part of a multi-agent system 

of such nature is also unpredictable. However, according to Simon (1969), a sys- 

tem is analyzable, and thus well designed, if it is decomposable into non-interacting 

modules. Thus, minimizing inter-module interactions is considered good engineering 

and principled AI, and most of traditional Artificial Intelligence relies on this style 

of top-down modularity. In contrast, nature abounds with complex systems whose 

global behavior results from precisely the type of interactions that current research 

methodologies try to avoid. These effects can be found at all scales, from the sub- 

atomic (Gutzwiller 1992), to the semantic (Minsky 1986), to the social (Deneubourg, 

Goss, Franks, Sendova-Franks, Detrain k Chretien 1990). 

Situated behavior is based on the interaction with, and thus feedback from, the 
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environment and other agents. Both negative and positive feedback are relevant. 

Negative feedback has a regulatory effect, damping the system's response to external 

influences, while positive feedback has an amplifying effect, increasing the system's 

response. In the multi-agent spatial domain, for example, negative feedback controls 

the local structure among the agents while positive feedback recruits more agents into 

the structure. 

Behaviors based on positive feedback usually require a critical mass to initiate 

and accelerate with increased group size. All of these behaviors are variations on re- 

cruitment; the more agents that are engaged in an activity, the more agents that join 

in. Such behaviors are usually unstable as they are sensitive to the particular con- 

ditions and resources required to maintain the recruitment effect. Numerous natural 

group behaviors are based on positive feedback: lynch mobs, public polls, popularity 

ratings, traffic jams, ant trails, and worker recruitment in both ants and bees are all 

instances of positive feedback (Camazine 1993, Deneubourg et al. 1990, Deneubourg, 

Aron, Goss, Pasteeis & Duernick 1986). 

A group of interacting agents is a dynamical system. Global behavior of such a 

complex systems is determined by the local interactions between individuals. These 

interactions merit careful study in order to understand the global behavior. In natural 

systems, such interactions result in the evolution of complex and stable behaviors that 

are difficult to analyze using traditional, top-down approaches. We postulate that in 

order to reach that level of complexity synthetically, such behaviors must be generated 

through a similar, interaction-driven, incrementally refined process. 

Precise analysis and prediction of the behavior of a single situated agent, specifi- 

cally, a mobile robot in the physical world, is an unsolved problem in robotics and AI. 

Previous work has shown that synthesis and analysis of correct plans in the presence 

of uncertainty can be intractable even in highly constrained domains (Lozano-Perez, 

Mason k Taylor 1984, Canny 1988, Erdmann 1989) and even on the simplest of sys- 

tems (Smithers 1994). Physical environments pose a great challenge as they usually 

do not contain the structure, determinism, and thus predictability usually required 

for formal analysis (Brooks 1991c, Brooks 1991 b). Predicting the behavior of a multi- 

agent system is more complex than the single-agent case. The difficulty in analyzing 

comes from two properties intrinsic to complex systems: 

1. the actions of an agent depend on the states/actions of other agents, 

2. the behavior of the system as a whole is determined by the interactions between 

the agents rather than by individual behavior. 

In general, no mathematical tools are available for predicting the behavior of a 

system with several, but not numerous, relatively complex interacting components, 



namely a collection of situated agents. In contrast to physical particle systems, which 

consist of large numbers of simple elements, multi-agent systems in nature and AI 

are defined by comparatively small groups of much more complex agents. Statistical 

methods used for analyzing particle systems do not directly apply as they require 

minimal interactions between the components (Weisbuch 1991, Wiggins 1990). 

Instead of attempting to analyze arbitrary complex behaviors, this work focuses 

on providing a set of behavior primitives that can be used for synthesizing and an- 

alyzing a particular type of complex multi-agent systems. The primitives provide a 

programming language for designing analyzable control programs and resulting group 

behaviors. 

2.4.4    Emergent Behavior 

Emergent behavior is a popular topic of research in the field of complex systems (see 

Forrest (1989), Langton (1989), Langton (1990), and Steels (1994a) for overviews). 

Such behavior is characterized by the following property: it is manifested by global 

states or time-extended patterns that are not explicitly programmed in but result 

from local interactions between a system's components. Because emergent phenom- 

ena are by definition observed at a global level, they depend on the existence of an 

observer. 

Emergent behavior can be observed in any sufficiently complex system, i.e., a 

system which contains local interactions with temporal and/or spatial consequences. 

Perhaps because of their pervasiveness, emergent phenomena have been objects of 

interest, although perhaps not objects of analytical study, for a long time. The 

property of observer-dependence make emergent phenomena more difficult to study. 

Kolen & Pollack (1993) eloquently describe why in general the complexity of a physical 

system is not an intrinsic property but is dependent on the observer, and further why 

traditional measures of complexity are insufficient for physical systems. Subjective 

evaluation is also discussed by Bonabeau (1993). 

Emergent phenomena are appealing to some researchers because they appear to 

provide something for nothing. These types of systems are referred to as "self- 

organizing" because of their apparent ability to create order. In reality, the dynamics 

of such self-organizing systems are carefully crafted (usually by eons of evolution) to 

produce the end-results. Theoretical analysis of multi-agent systems of the type used 

in this research is difficult, and, as will be argued, exact prediction of the behavior 

of such systems is not currently within reach. Consequently, work on situated group 

behavior can benefit from synthesis and experimentation. 

Emergent behaviors result from systems that are complex enough to defy our 
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approach level of description 

complex dynamics 

<?> 
state spaces 

microscopic & continuous 
macroscopic & quasi-continuous 
macroscopic & discrete 

Table 2.2: A desirable level of system description for control and analysis lies between 

the commonly employed ends of the spectrum. 

current tools for predictive analysis, and require simulation for prediction (Darley 

1994). In order to structure and simplify this process of experimental behavior design, 

this work will provide a set of basic group behaviors and methods for synthesizing 

them from local rules. These basic behaviors and their combinations are emergent in 

that they result from the local interactions, but are predictable and well understood. 

2.4.5    Limits of Analysis 

The difficulty in analyzing complex multi-agent systems lies in the level of system 

description. Descriptions used for control are usually low level, detailed, and con- 

tinuous. In contrast, planning and analysis are usually done at a high level, often 

using an abstract, discrete model. A more desirable and manageable level may lie in 

between those two, as depicted in Table 2.2. 

In general, this work is concerned with predicting the global behavior of the system 

rather than the precise behavior of any of its components. At the high level of 

precision requiring a detailed level of description, most interactions are chaotic and 

unpredictable (Kolen k Pollack 1993). The goal of analysis is to gain predictive power 

by modeling the system at the right level. In the case of artificial complex systems, 

however, it is not possible to determine that level without generating and testing the 

system itself. 

For the case of a fully deterministic agent and world, it is possible, but usually 

not realistic, to enumerate all trajectories the agent can take in its action or behavior 

space. This is equivalent to elaborating the agent's phase space. Early AI methods 

for proving correctness consisted of showing that, for a given set of possible initial 

conditions, usually expressed as discrete states, the agent would, through a series 

of actions, reach the desired terminal state, often designed to be the goal. Search- 

based methods for plan or action generation are particularly amenable to this type of 

analysis (Fikes & Nilsson 1971). However, besides the scaling problem, this approach 

to behavior analysis fails in more realistic worlds in which both the agent and the 
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environment are not deterministic. 

State transitions in nondeterministic worlds can be modeled probabilistically (e.g., 

Doyle & Sacks (1989)) but obtaining appropriate values for the probabilities is in 

general very difficult since it requires a complete and accurate model of the world. 

Even small inaccuracies in the values can accrue and result in artifactual dynamics at 

the global level. Consequently, most probabilistic models fail to capture the stochastic 

dynamics of the kinds of complex behavior this work is concerned with. 

The crux of the problem, as before, is determining the appropriate level of system 

description. Quantitative analysis is extremely difficult for any but the simplest of 

deterministic systems. This may not appear to be a problem, as most researchers 

would be satisfied with knowing the system's global, qualitative behavior. Global 

behavior, however, is generally defined in quantitative terms from which qualitative 

descriptions are derived, whether it be on the microscopic scale of particle interactions 

(Abraham & Shaw 1992) or on the macroscopic scale of building maps (Chatila & 

Laumond 1985) of the environment. 

The path to a qualitative description of a system is indirect, requiring abstract- 

ing away the details or through clustering analytical, quantitative information. A 

qualitative description is a collection of non-analytic symbols (i.e., words instead of 

numbers) with complicated associated semantics. When these semantics are defined, 

they are either stated in terms of other symbols or eventually grounded in numerical 

terms. 

Given the difficulty of the problem, most analytical approaches to date have been 

limited to constrained special-case scenarios. This is not surprising since any general 

method for analyzing complex systems with interacting components is unlikely to be 

powerful enough to provide useful predictions. 

Since prediction of group behavior is too difficult from the individual perspective, 

approaches that focus on describing and analyzing ensemble properties appear better 

suited for the domains addressed in this work. The next section describes an approach 

to assessing and qualitatively predicting global behavior by measuring interference, a 

local property that has collective consequences. 

2.4.6    Interference and Conflict 

Interference is any influence that opposes or blocks an agents' goal-driven behavior. 

In societies consisting of agents with identical goals, interference manifests itself as 

competition for shared resources. In diverse societies, where agents' goals differ, more 

complex conflicts can arise, including goal clobbering5, deadlocks, and oscillations. 

5The term is used in the same sense as in Sussman k McDermott (1972) and Chapman (1987). 
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Two functionally distinct types of interference are relevant to this work: interfer- 

ence caused by multiplicity called resource competition, and interference caused by 

goal-related conflict called goal competition. 

Resource competition includes any interference resulting from multiple agents 

competing for common resources, such as space, information, or objects. As the 

size of the group grows, this type of interference increases, causing the decline in 

global performance, and presenting an impetus for social rules. 

Resource competition manifests itself in homogeneous and heterogeneous groups 

of coexisting agents. In contrast, goal competition arises between agents with different 

goals. Such agents may have identical high-level goals (such as, for example, a family 

has), but individuals can pursue different and potentially interfering subgoals at any 

particular instance, i.e., they can be "functionally heterogeneous." Such heterogeneity 

does not arise in SIMD-style groups of functionally identical agents in which all are 

executing exactly the same program at each point in time. 

Goal competition is studied primarily by the Distributed AI community (Gasser 

k Huhns 1989). It usually involves predicting other agents' goals and intentions, thus 

requiring agents to maintain models of each other (e.g., Huber k Durfee (1993) and 

Miceli k Cesta (1993)). Such prediction abilities require computational resources that 

do not scale well with increased group sizes6. In contrast, in the work discussed here, 

goal competition, and thus the need for agents to model each other, is minimized by 

agent homogeneity, and we focus largely on issues of direct resource competition. 

2.4.7    Individual vs. Group Benefit 

Social rules attempt to eliminate or at least minimize both resource and goal competi- 

tion. In particular, their purpose is to direct behavior away from individual greediness 

and toward global efficiency7. In certain groups and tasks, agents must give up indi- 

vidual optimality in favor of collective efficiency. In those cases, greedy individualistic 

strategies perform poorly in group situations because resource competition grows with 

the size of the group. The agents described here fall into this category. 

Since social rules are designed for optimizing global resources, it is in the inter- 

est of each of the individuals to obey them. However, since the connection between 

individual and collective benefit is rarely direct, societies can harbor deserters who 

disobey social rules in favor of individual benefit. Game theory offers elaborate stud- 

ies of the effects of deserters on individual optimality (Axelrod 1984), but domains 

6The problem of maintaining internal models or so called theories of mind is discussed in detail 
in section 2.3.5. 

7In cultural contexts global efficiency is sometimes elevated to "the common good." 
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treated in game theory are much more cleanly constrained than those treated here. 

In particular, game theory deals with rational agents capable of evaluating the util- 

ity of their actions and strategies. In contrast, our work is concerned with situated 

agent domains where the agents cannot be assumed to be rational due to incomplete 

or nonexistent world models and models of other agents, inconsistent reinforcement, 

and noise and uncertainty. 

Furthermore, the goal of this work is not to devise optimal strategies for a spe- 

cific group behavior but to provide methodologies for finding efficient approaches 

to a variety of related problems. Optimality criteria for agents situated in physical 

worlds and maintaining long-term achievement and maintenance goals are difficult 

to characterize and even more difficult to achieve. While in game theory interference 

is a part of a competing agent's predictable strategy, in the embodied multi-agent 

domain interference is largely a result of direct resource competition, which can be 

moderated with relatively simple social rules. For example, complex traffic jams can 

be alleviated through the appropriate use of yielding. 

2.4.8     Estimating Interference 

Understanding interference is an integral part of synthesizing and analyzing group 

behavior. In synthesis, the task must be distributed over multiple agents in a way that 

minimizes interference, or the benefits of concurrent execution are lost. In analysis, 

interference must be taken into account in order to characterize the realistic behavior 

of a distributed system as well as motivate the existence of social rules and protocols. 

Attempting to precisely predict inter-agent interference is equivalent to trying to 

predict the system's exact behavior. As has been argued about analysis in general, 

this level of prediction is impossible to reach. This section proposes a qualitative 

alternative that can be applied to obtain useful estimates. 

Agent density is a key parameter for estimating interference since it measures 

likelihood of interaction. The higher the density the higher the probability that 

any two agents will encounter each other and interact. Even without evaluating the 

outcome of interaction, being able to predict its estimated frequency is a useful part 

of describing the dynamics of a group. For example, the probability of interaction 

based on density determines how "collectively-conscious" an agent must be, or how 

much greedy behavior it can get away with. 

Density estimation is straight-forward. We define group density to be the ratio 

of the sum of the agents' footprints and the size of the available interaction space. 

An agent's footprint is the sphere of its influence. In the spatial domain, an agent's 

footprint is based on its geometry, its motion constraints, and its sensor range and 
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configuration. The size of the interaction space is the area of the physical space the 

agents can inhabit. The same idea applies in more abstract domains as well. In many 

such domains the interaction space is time, and the agent's footprint is the duration 

of information exchange. For instance, in a telecommunications domain density can 

be estimated from the duration of all calls within a unit of time. Highway traffic 

is another example in which the relevant space of interactions is time. The agent 

density can be represented by the ratio of the sum of the agents' footprints and the 

total surface area of the road. 

The density metric allows for computing how much interaction space is necessary 

for a group to perform any task, and whether a specific amount of interaction space 

is sufficient. In the spatial domain, for example, using the number and size of the 

agents is enough to compute the mean free path of an agent and use it to estimate how 

many collisions are expected between agents executing random walks. Similarly, for 

the telecommunications domain the average uninterrupted call duration relative to 

the average number of calls per unit time can be computed, which gives an estimate 

of how much "phone interaction space" is available for the given parameters. Finally, 

for the highway domain the same computation yields the average length of "free" 

speeding8. 
Such an approximate measure of density can then be used to estimate how much 

interaction space, on average, is required for the system, even before the specifics of 

the task are considered. By bringing the constraints of the task into the computation, 

the expected interference over the duration of the task can also be estimated. For 

most tasks, interference will vary depending on the fluctuations of the density over 

the lifetime of the task. This temporal density distribution demonstrates which parts 

of the task require social rules. Although the exact computation of relevant density is 

dependent on the particular domain and task, a rough approximation provides useful 

metrics for estimating the dynamics of the group and the evolution of behavior of the 

system as a whole. 

2.5     Summary 

Among other things, this chapter has described the constraints that were imposed 

on the agents in order to structure and focus our study of group behavior. This 

work in the thesis is focused on homogeneous agents using no explicit world models, 

undirected communication, and implicit cooperation. All of these constraints were 

chosen in order to approach the group behavior problem bottom-up and incremen- 

8This model does not include stationary police cars. 
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tally. This work is concerned with testing the limits of minimal internal modeling 

and communication in order to find when such simple abilities are sufficient and when 

more complex representation and communication abilities are necessary. 
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Chapter 3 

Related Work 

3.1     Robotics and Behavior Control 

This thesis focuses on the problems involved in synthesizing and analyzing intelligent 

group behavior. In particular, the work described here applies to agents that are 

embodied and situated in physically constrained worlds, inhabited by other agents 

of the same kind, and dealing with multiple goals ranging from basic survival to 

accomplishing one or more tasks. The experimental environments in which the work 

was validated used mobile robots and multi-agent simulations. 

Consequently, this work is related to a number of lines of research within and 

outside of AI, including mobile robotics, intelligent control, simulations of multi-agent 

systems, distributed artificial intelligence, artificial life, machine learning, ethology, 

and cognitive science. This section presents an overview of the work in these related 

fields, with the exception of machine learning, which is covered in the second part of 

the thesis. 

3.1.1     Control of Multiple Physical Robots 

The last decade has witnessed a shift in the emphasis of robotics in general and 

mobile robotics in particular toward physical implementations. Most of the work in 

robotics so far has focused on control of a single agent. The following is the ma- 

jority of projects that have dealt with control of multiple physical robots. Fukuda, 

Nadagawa, Kawauchi k Buss (1989) and subsequent work describe an approach to 

coordinating multiple homogeneous and heterogeneous mobile robotic units, and de- 

monstrate it on a docking task. Caloud, Choi, Latombe, LePape k Yim (1990), 

Noreils (1992) and Noreils (1993) remain faithful to the state-based framework, and 

36 



apply a traditional planner-based control architecture to a box-moving task imple- 

mented with two robots in a master-slave configuration. Kube (1992) and Kube & 

Zhang (1992) describe a series of simulations of robots performing a collection of sim- 

ple behaviors that are being incrementally transferred to physical robots. Barman, 

Kingdon, Mackworth, Pai, Sahota, Wilkinson & Zhang (1993) report on a prelimi- 

nary testbed for studying control of multiple robots in a soccer-playing task. Parker 

(19936) and Parker (1994) describes a behavior-based task-sharing architecture for 

controlling groups of heterogeneous robots, and demonstrates it on a set of physical 

robots performing toxic waste cleanup and box pushing. Donald, Jennings & Rus 

(1993) report on the theoretical grounding for implementing a cooperative manipu- 

lation task with a pair of mobile robots. Perhaps closest in philosophy as well as 

the choice of task is work by Altenburg (1994) and Beckers, Holland & Deneubourg 

(1994). Altenburg (1994) describes a variant of the foraging task using a group of 

LEGO robots controlled in reactive, distributed style. Beckers et al. (1994) demon- 

strate a group of four robots clustering initially randomly distributed pucks into a 

single cluster through purely stigmergic communication. 

In terms of cooperation and communication, most of the above work has fallen 

along the two ends of the spectrum: it either uses extensive explicit communication 

and cooperation, or almost none at all. In systems that are cooperative by design, the 

two or more robots are aware of each other's existence, and can sense and recognize 

each other directly or through communication. This type of research explores explicit 

cooperation, usually through the use of directed communication and is represented 

by Caloud et al. (1990), Noreils (1992), and Parker (1993a). 

The other category includes work on implicit cooperation, in which the robots 

usually do not recognize each other but merely coexist and indirectly cooperate by 

having identical or at least compatible goals. Such work includes Dallas (1990) and 

Kube (1992). The work described in this thesis falls nearer this end of the spectrum, 

but is focused on agents that can discriminate each other from the rest of the world, 

and use this ability as a basis for social behavior. 

3.1.2     Simulations of Multiple Agents 

With the exception of the work described above, the problem of multi-agent control 

has been treated mostly in simulation and under two major categories: simulations 

of situated systems and simulations of abstract agents. 

Simulations of situated systems involve some degree of faithfulness to the phys- 

ical world, at least to the extent of employing simple models of sensors, effectors, 

and physical laws.   A number of simulations of behavior-style controlled systems 
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have been implemented. For instance, Steels (1989) describes a simulation of simple 

robots using the principles of self-organization to perform a gathering task. Brooks, 

Maes, Mataric k Moore (1990) report on a set of simulations in a similar task domain, 

with a fully decentralized collection of non-communicating robots. Arkin (1992) de- 

scribes a schema-based approach to designing simple navigation behaviors, used for 

programming multiple agents working in a simulated environment with future ex- 

tensions to physical agents; Arkin, Balch k Nitz (1993) apply the approach to a 

multi-agent retrieval task. Brock, Montana k Ceranowicz (1992) describe SIMNET 

simulations of large numbers of tank-like robots performing avoidance and formation 

following. Kube, Zhang k Wang (1993) propose a behavior-arbitration scheme that 

will be tested on physical robots. Simulations tend to simplify both sensing and ac- 

tuation. Physically-based simulations, however, using realistic physics models of the 

agent, allow for generating and testing more realistic behavior. For example, Hod- 

gins k Brogan (1994) describe experiments with fully physically-based simulations 

of groups of hopping robots. 

In contrast to simulations of multiple robots, "swarm intelligence" refers to sim- 

ulations of abstract agents dealing with more theoretical problems of communication 

protocols, the design of social rules, and strategies for avoiding conflict and deadlock 

often in societies with with large numbers of simple agents. Representative work in- 

cludes Fukuda, Sekiyama, Ueyama k Arai (1993), Dario k Rucci (1993), Dudek et 

al. (1993), Huang k Beni (1993), Sandini, Lucarini k Varoli (1993), Kurosu, Furuya 

k Soeda (1993), Beni k Hackwood (1992), Dario, Ribechini, Genovese k Sandini 

(1991), and many others. This work is also related to DAI (see below) but in contrast 

to DAI it deals with agents of comparatively low cognitive complexity. 

3.2     Artificial Life 

The field of Artificial Life (Alife) focuses on bottom-up modeling of various complex 

systems. Alife work relevant to this thesis features simulations of colonies of ant- 

like agents, as described by Corbara, Drogoul, Fresneau k Lalande (1993), Colorni, 

Dorigo k Maniezzo (1992), Drogous, Ferber, Corbara k Fresneau (1992), Travers 

(1988), and many others. Deneubourg et al. (1990), Deneubourg k Goss (1989), and 

Deneubourg, Goss, Pasteeis, Fresneau k Lachaud (1987) have experimented with 

real and simulated ant colonies and examined the role of simple control rules and 

limited communication in producing trail formation and task sharing. Deneubourg, 

Theraulax k Beckers (1992) define some key terms in swarm intelligence and discuss 

issues of relating local and global behavior of a distributed system. Assad k Packard 

(1992), Hogeweg k Hesper (1985) and other related work also report on a variety of 

38 



simulations of simple organisms producing complex behaviors emerging from simple 

interactions. Schmieder (1993) reports on an experiment in which the amount of 

"knowledge" agents have about each other is increased and decreased based on local 

encounters. Werner & Dyer (1990) and MacLennan (1990) describe systems that 

evolve simple communication strategies. On the more theoretical end, Keshet (1993) 

describes a model of trail formation that fits biological data. 

Work in Artificial Life is related to the work in this thesis in that both are con- 

cerned with exploiting the dynamics of local interactions between agents and the world 

in order to create complex global behaviors. However, work in Alife does not usually 

concern itself with agents situated in physically realistic worlds. Additionally, it usu- 

ally deals with much larger populations sizes that the work presented here. Finally, 

it most commonly employs genetic techniques for evolving the agents' comparatively 

simple control systems. 

3.3    Distributed Artificial Intelligence 

Distributed Artificial Intelligence (DAI) is another field that deals with multi-agent 

interactions (see Gasser & Huhns (1989) for an overview). DAI focuses on negoti- 

ation and coordination of multi-agent environments in which agents can vary from 

knowledge-based systems to sorting algorithms, and approaches can vary from heuris- 

tic search to decision theory. In general, DAI deals with cognitively complex agents 

compared to those considered by the research areas described so far. However, the 

types of environments it deals with are relatively simple and low complexity in that 

they feature no noise or uncertainty and can be accurately characterized. 

DAI can be divided into two subfields: Distributed Problem Solving (DPS) and 

Multi-Agent Systems (MAS) (Rosenschein 1993). DPS deals with centrally designed 

systems solving global problems and using built-in cooperation strategies. In contrast, 

MAS work deals with heterogeneous, not necessarily centrally designed agents faced 

with the goal of utility-maximizing coexistence. 

Decker & Lesser (1993a) is a good example of DPS work. It addresses the task of 

fast coordination and reorganization of agents on a distributed sensor network with 

the goal of increasing system performance and decreasing performance variance. Hogg 

& Williams (1993) is another good example showing how parallel search performs 

better with distributed cooperative agents than with independent agents. 

Examples of MAS work include Ephrati (1992), which describes a master-slave 

scenario between two agents with essentially the same goals. Miceli & Cesta (1993) 

describe an approach to using an estimate of the usefulness of social interactions at 

the individual agent level in order for agents to select what other agents to inter- 
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act with. This decision is based on an estimate of possible future payoff in terms 

of help given the agents' attitudes and skills. Unfortunately, the estimation of de- 

pendence relations scales poorly with the size of the group, and as is the case of 

most DAI work, is best suited for a small number of highly deliberative, non-situated 

knowledge-based agents. Along similar lines, Kraus (1993) describes negotiations and 

contracts between selfish agents. Durfee, Lee k Gmytrasiewicz (1993) discuss game- 

theoretic and AI approaches to deals among rational agents. The paper describes the 

advantages of introducing meta-level information. 

Certain aspects of DAI work are purely theoretical and deal with the difficulty of 

multi-agent planning and control in abstract environments. For example, Shoham k 

Tennenholtz (1992) discuss the complexity of automatically deriving social laws for 

agent groups. They show that the problem is NP-complete but can, under a number 

of restrictions, be made polynomial. 

Some DAI work draws heavily from mathematical results in the field of parallel 

distributed systems. In particular, Huberman (1990) describes the effects of informa- 

tion exchange on the performance of a collection of agents applied to a class of search 

problems. He also addresses the ubiquity of log-normal distributions of performance 

found across different domains, and hypothesizes a universal law of distribution for all 

large systems of interdependent agents using resources allocated based on perceived 

progress. Clearwater, Huberman k Hogg (1991) present related work on cooperative 

strategies for solving constraint satisfaction problems. 

DAI and Alife merge in the experimental mathematics field that studies computa- 

tional ecosystems, simulations of populations of agents with well defined interactions. 

The research is focused on global effects and the changes in the system as a whole over 

time. This process of global changes is usually referred to "co-evolution" (Kephart, 

Hogg k Huberman 1990). Often the systems studied have some similarities to the 

global effects found in biological ecosystems, but the complex details of biological 

systems cannot be reasonably addressed. Co-evolution experiments are used to find 

improved search-based optimization techniques. For example, Hillis (1990) demon- 

strates how co-evolution can be used to overcome local maxima in evolving optimal 

sorting algorithms. 

3.4    Behavior Analysis 

Previous section have described related work in synthesis and control of group be- 

havior. This section reviews related work in analysis of group behavior. 

As described earlier, Distributed Artificial Intelligence (DAI) deals with multi- 

agent negotiations and coordination in a variety of abstract environments. Decker k 
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Lesser (19936) is an example of a DAI approach to modeling a distributed system. 

It depends on the ability to specify the agents' beliefs, intentions, and their quality 

and duration. These types of models do not scale well with the group size. Further, 

in order to apply at all they need to abstract away the low-level properties of the 

system, such as the exact noise and errors, which have been shown to critically effect 

the high-level behavior (Weisbuch 1991, Wiggins 1990). 

Similarly, Kosoresow (1993) describes a probabilistic method for agent coordina- 

tion based on Markov processes. This method relies on specifying agents inference 

mechanisms (as chains), and having agents with compatible and specifiable goals and 

preferences. This type of approach applies to domains where the problem of resource 

allocation can be clearly specified. However, the ability to predict agents' behavior 

in order to assess the resource allocation problem is extremely difficulty in physical 

system with noise and uncertainty. If it were not, a number of mathematical and 

game-theoretic paradigms would apply. 

The classical robotics field of motion-planning has dealt with the problem of 

planning for multiple objects. For example, Erdmann & Lozano-Perez (1987) describe 

theoretical results on the motion-planning problem for multiple polygonal moving 

objects. The presented solution searches the two-dimensional representation of space- 

time slices to find a safe path. These results depend on having only one object move at 

a time, a constraint that cannot be easily enforced in situated systems. Furthermore, 

the proposed strategy is too computationally intensive to be applied for real-time 

control. 

Donald et al. (1993) discuss motion-planning algorithms for coordinated manip- 

ulation with different numbers of agents and different amounts of a priori knowledge 

about the object to be moved. The theoretical aspect of the work focuses on comput- 

ing the information requirements for performing particular robot tasks. The work is 

directly applicable to manipulation tasks, such as box-pushing, that can be addressed 

with one or more robots as cooperating "force-appliers." In contrast, our work does 

not focus on algorithms for explicit cooperation on tasks such as object manipulation, 

but instead on distributed solutions to problems that do not necessitate cooperation 

but can benefit from it. 

Strategies for proving distributed algorithm correctness are tangentially related to 

analyzing multi-agent behavior. Lynch & Tuttle (1987), for example, describe such 

methods for distributed systems with hierarchical components. More closely related 

is work by Lynch (1993) that uses a simulation method for reasoning about real-time 

systems modeled as general automata. The work is targeted at proving properties 

of message-passing protocols, most of which are more constrained and less uncertain 

than communication among distributed physical agents. 
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Work on stochastic analysis of qualitative dynamics, such as that by Doyle k 

Sacks (1989), is appealing for its qualitative nature. However, the proofs depend on 

the ability to represent the system as a series of transitions in a graph and the system's 

dynamics as a Markov chain over that graph. The difficulty lies in establishing such 

a model for a multi-agent system. It is in general difficult to obtain the values for the 

transition probabilities that capture the complex dynamics of such systems. Simpler 

models can be constructed but fail to contain enough detail to conserve the dynamics. 

Related work on analysis of group behavior has been conducted in branches of 

biology. For example, Belie, Skarka, Deneubourg k Lax (1986) present a model for 

honeycomb constructions based on partial differential equations describing the bee 

density distribution in the hive and their wax distribution behavior. Less structured 

group behavior, such as exploration and foraging, has also been addressed. For in- 

stance, Benhamou k Bovet (1990) describe a probabilistic model for foraging. The 

work closest to the domains addressed in this thesis is done by Deneubourg et al. 

(1986), Deneubourg et al. (1987), Calenbuhr k Deneubourg (1992), etc. The authors 

propose strategies for describing and analyzing various collective behaviors in ants. 

Their work is closest in nature to the kind of analysis we propose as viable for de- 

scribing group behavior of situated, embodied agents. In both cases the analysis is 

performed at the level of the collective rather than the individual. 

Similarly, Miramontes, Sole k Goodwin (1993) present a framework for describing 

ant behavior as individually chaotic but collectively stable and periodic. Spatial dis- 

tributions of activity display similar symmetries. Brown k McBurnett (1993) describe 

a model of a simple political voting system which displays a large array of group be- 

haviors based on simple local feedback (i.e., recruitment or persuasion) mechanisms. 

The system has two stable states: a homogeneous distribution and a collection of in- 

variant blocks. Intuitively, this is an analogy of an equal power distribution, in which 

any imbalance results in a transient instability. Camazine (1993) shows an analogous 

pattern for honey-comb population, nectar foraging, and brood sorting while DeAn- 

gelis, Post k Travis (1986) demonstrate how most aggregation-type behaviors can be 

shown to fit this pattern. 

Another form of common feedback-based behavior involves the synchronization 

of rhythmic patters of activity. For example, Meier-Koll k Bohl (1993) describe the 

synchronization of circadian rhythms of in human and animal subjects and models 

them as a collection of coupled oscillators. Analogous effects are commonly observed 

in hormonal cycles (Vander, Sherman k Luciano 1980). In such systems, the synchro- 

nized state is a stable behavior, as is the evenly dispersed equal-power state, while 

all other states are transient. Sismondo (1990) reports on similar synchronization 

behavior in insect rhythmic signaling and proposes a similar model of the behavior. 
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3.5     Summary 

The work in this thesis shares motivations and goals with a number of related fields, 

including AI, robotics, DAI, Alife, and ethology. This chapter reviewed the most 

related lines of research from each of these fields in preparation for the next chapter 

which describes, in detail, the proposed approach. 
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Chapter 4 

The Basic Behavior Approach 

One of the hardest problems in AI is finding the right level of system description for 

effective control, learning, modeling, and analysis. This thesis proposes a particu- 

lar description level, instantiated in so-called basic behaviors, building blocks for 

synthesizing and analyzing complex group behavior in multi-agent systems. 

Biology provides evidence in support of basic behavior units at a variety of levels. 

A particularly clean and compelling case can be found in motor control. Controlling 

a multi-joint manipulator such as a frog leg or a human arm is a complex task, 

especially if performed at a low level. In order to cut down the complexity, nature 

imposes an abstraction. Mussa-Ivaldi k Giszter (1992) show that a relatively small 

set of basis vector fields, found in the frog's spine, generates the frog's entire motor 

behavior repertoire by applying appropriate combinations of the basis vectors. Bizzi, 

Mussa-Ivaldi k Giszter (1991) and Bizzi k Mussa-Ivaldi (1990) discuss control of the 

human arm with a similar approach. The described motor basic behaviors are a result 

of the types of constraints: the dynamics of the manipulator and the dynamics of the 

motor tasks. In the case of motor control, the behaviors are designed for specific 

optimizations, such as minimizing effort by minimizing jerk, executing straight line 

trajectories, and using bell-shaped velocity profiles (Atkeson 1989). 

Taking the idea from motor control, we define behaviors as control laws that 

encapsulate sets of constraints so as to achieve particular goals. Basic behaviors are 

defined as a minimal set of such behaviors, with appropriate compositional properties, 

that takes advantage of the dynamics of the given system to effectively accomplish 

its repertoire of tasks. 

Basic behaviors are intended as a tool for describing, specifying, and predicting 

group behavior. By properly selecting such behaviors one can generate repeatable 

and predictable group behavior.   Furthermore, one can apply simple compositional 
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Problem        Synthesis and analysis of intelligent group behavior 
in order to understand the phenomenon (science) 

and apply it (engineering). 

Assertion      Complex group behavior results from 

local interactions based on simple rules. 

Approach     Propose basic behaviors for structuring 

such simple rules. 

Validation    Implement robot group behaviors using 

a basic behavior set and combinations. 

Table 4.1: A summary of the group behavior problem being addressed in the thesis, 
and the structure of the proposed solution. 

operators to generate a large repertoire of higher-level group behaviors from the basic 

set. 

The idea behind basic behaviors is general, but particular sets of such behaviors are 

domain-specific. In order to demonstrate the methodology, basic behaviors for group 

interaction in the spatial domain will be derived, combined, analyzed theoretically, 

and tested empirically. Table 4.1 summarizes the research goals, the approach, and 

the experimental methodology. 

4.1     Selecting and Evaluating Basic Behaviors 

This chapter describes how basic behaviors are selected, specified, implemented, 

and evaluated. The idea of basic behaviors is general: they are the intended as primi- 

tives for structuring, synthesizing, and analyzing system behavior, as building blocks 

for control, planning, and learning. Basic behaviors are related to dynamic attrac- 

tors, equilibrium states, and various other terms used to describe stable, repeatable, 

and primitive behaviors of any system. This work is concerned with finding ways 

of identifying such behaviors for a specific system, and using them to structure the 

rest of the system's behavioral repertoire. The power of basic behaviors lies in their 

individual reliability and in their compositional properties. 

This work focuses on basic behaviors for generating intelligent group interactions 

in multi-agent systems. It is based on the belief that global behavior of such systems 
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results from local interactions, and furthermore, that those interactions are largely 

governed by simple rules. Basic behaviors present a mechanism for structuring the 

space of possible local rules into a small basis set. 

This chapter will illustrate the process of selecting basic behaviors on concrete ex- 

amples of behaviors for a group of agents interacting in physical space. The process of 

identifying the basic behaviors, formally specifying them, implementing them, testing 

their properties both theoretically and empirically, and finally combining them, will 

be carried out. The criteria for selecting basic behaviors for the domain of spatially 

interacting agents are described first. 

4.1.1     Criteria for Selection 

We propose that, for a given domain, a small set of basis or basic behaviors can be 

selected, from which other complex relevant and desirable group behaviors can be 

generated. Basic behavior sets should meet the following criteria: 

Necessity: A behavior within a basic behavior set is necessary if it achieves a 

goal required for the agent's accomplishment of its task(s), and that goal cannot be 

achieved with any of the other basic behaviors or their combinations. Thus, a basic 

behavior cannot be implemented in terms of other behaviors and cannot be reduced 

to them. 

Sufficiency: A basic behavior set is sufficient for accomplishing a set of tasks in 

a given domain if no other behaviors are necessary. The basic behavior set should, 

under the combination operators, generate all of the desirable higher-level group 

behaviors. 

If such behaviors are designed by hand, as opposed to being observed in an ex- 

isting system, they should, in addition to the above criteria, also have the following 

properties: 

1. Simplicity: the behavior should be implemented as simply as possible, 

2. Locality: within our framework, the behavior should be generated by local rules, 

utilizing locally available sensory information, 

3. Correctness: within the model in which it is tested, the behavior should provably 

attain (and in some cases maintain) the goal for which it was intended within 

the set of conditions for which it is designed, 

4. Stability: the behavior should not be sensitive to perturbations in external 

conditions for which it is designed, 
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5. Repeatability: the behavior should perform according to specification in each 

trial under reasonable conditions and error margins, 

6. Robustness: the performance of the behavior should not degrade significantly 

in the presence of specified bounds of sensory and effector error and noise, 

7. Scalability: the behavior should scale well with increased and decreased group 

size. 

It is difficult to imagine any fixed metric for selecting an "optimal" set of be- 

haviors, since the choice of the basic behavior set depends on the task(s) it will be 

applied to. This work makes no attempt to devise optimality criteria in any formal 

sense. Furthermore, this work does not provide theoretical proofs of correctness of 

the algorithms for the presented behaviors. While such proofs may be computable for 

a simple model of the agents and the environment, they become prohibitively difficult 

for increasingly more realistic models that include sensors, effectors, and dynamics. 

As an alternative to simplified modeled environments, the behaviors were tested in 

the fully complex worlds with all of the error, noise, and uncertainly. In order to 

make the evaluation more complete, various initial conditions and group sizes were 

tested, and a large amount of data were obtained for analysis. Behavior evaluation is 

described in detail in section 4.5. 

The next section illustrates the process of selecting basic behaviors for the domain 

of planar mobile agents. 

4.1.2     Basic Behaviors for Movement in the Plane 

The experimental work in this thesis is focused on interactions among mobile agents 

in two-dimensional space. This domain has the desired complexity properties: the 

number of possible collective behaviors is unbounded. Fortunately, the unbounded 

space of possible spatial and temporal patterns can be classified into classes, and 

thus effectively viewed from a lower level of resolution. The classification is based on 

task and domain-specific criteria which allow for selecting out the (comparatively) 

few relevant behavior classes to focus on. The proposed basic behaviors impose such 

classes; they define observable group behaviors without specifying particular rules for 

implementing them. 

Group behaviors in the spatial domain can be viewed as spatio-temporal patterns 

of agents' activity. Certain purely spatial fixed organizations of agents are relevant, 

as are certain spatio-temporal patterns. Purely spatial fixed organizations of agents 

correspond to goals of attainment while spatio-temporal patterns correspond to goals 

of maintenance. 
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Safe-Wandering the ability of a group of agents to move around while avoid- 
ing collisions with each other and other obstacles. Here, the 
homogeneous nature of the agents can be used for inter-agent 
collision avoidance. Thus, two distinct strategies can be de- 

vised; one for avoiding collisions with other agents of the same 
kind, and another for avoiding collisions everything else. 

Following the ability of two or more agents to move while staying one 
behind the other. 

Dispersion the ability of a group of agents to spread out over an area in 
order to establish and maintain some predetermined minimum 

separation. 

Aggregation the ability of a group of agents to gather in order to establish 
and maintain some predetermined maximum separation. 

Homing the ability to reach a goal region or location. 

Table 4.2: A basic behavior set for the spatial domain, intended to cover a variety of 
spatial interactions and tasks for a group of mobile agents. 

In the process of selecting basic behaviors, the designer attempts to decide what 

behavior set will suffice for a large repertoire of goals. While the dynamical properties 

of the system provide bottom-up constraints, the goals provide top-down structure. 

Both of these influences guide the behavior selection process. Energy minimization 

is a universal goal of powered physical systems. In the planar motion domain this 

goal translates into minimization of non-goal-driven motion. Such motion is either 

generated by poor behavior design, or by interference between agents. Thus, minimiz- 

ing interference means maximizing goal-driven behavior and minimizing unnecessary 

motion. 
Minimizing interference translates directly into the achievement goal of immediate 

avoidance and the maintenance goal of moving about without collisions. Avoidance 

in groups can be achieved by dispersion, a behavior that reduces interference locally. 

It can also serve to minimize interference in classes of tasks that require even space 

coverage, such as those involving searching and exploration. 

In contrast to various goals that minimize interaction by decreasing physical prox- 

imity, many goals involve the exchange of resources through physical proximity. Con- 

sequently, aggregation is a useful primitive.  Moving in a group requires some form 
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of coordinated motion in order to minimize interference. Following and flocking are 

examples of such structured group motion. 

Table 4.2 shows a list of behaviors that constitutes a basic set for a flexible reper- 

toire of spatial group interactions. Biology offers numerous justifications for these 

behaviors. Avoidance and wandering are survival instincts so ubiquitous it obviates 

discussion. Following, often innate, is seen in numerous species (McFarland 1985). 

Dispersion is commonplace as well. DeScnutter L Nuyts (1993) show elegant ev- 

idence of gulls aggregating by dynamically rearranging their positions in a field to 

maintain a fixed distance from each other. Camazine (1993) demonstrates similar gull 

behavior on a ledge. People maintain similar arrangements in enclosed spaces (Gleit- 

man 1981). Similarly, Floreano (1993) demonstrates that simulated evolved ants use 

dispersion consistently. Aggregation, as a protective and resource-pooling and shar- 

ing behavior, is found in species ranging from the slime mold (Kessin & Campagne 

1992) to social animals (McFarland 1987). The combination of dispersion and aggre- 

gation is an effective tool for regulating density. Density regulation is a ubiquitous 

and generically useful behavior. For instance, army ants regulate the temperature 

of their bivouac by aggregating and dispersing according to the local temperature 

gradient (Franks 1989). Temperature regulation is just one of the many side-effects 

of density regulation. Finally, homing is a basis of all navigation and is manifested by 

all mobile species (for biological data on pigeons, bees, rats, ants, salmon, and many 

others see Gould (1987), Muller L Wehner (1988), Waterman (1989), Foster, Castro 

k McNaughton (1989), and Mataric (19906)). 

Besides the described behavior set, numerous other useful group behaviors exist. 

For example, biology also suggest surrounding and herding as frequent patterns of 

group movement, related to a higher level achievement goal, such as capture or mi- 

gration (McFarland 1987). These and other behaviors can be generated by combining 

the basic primitives, as will be described and demonstrated in the next chapter. 

4.2     Basic Behavior Experiments 

The remainder of this chapter describes the experimental environments, presents 

the algorithms for implementing the proposed basic behaviors, and evaluates their 

performance based on a battery of tests and a collection of criteria. 

4.2.1     Experimental Environments 

Behavior observation is one of the primary methods for validating theories in syn- 

thetic AI projects like the one described in this thesis.   In order to have conclusive 
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results, it is necessary to try to separate the effects caused by the particular experi- 

mental environment from those intrinsic to the theory being tested. In order to get 

to the heart of group behavior issues rather than the specific dynamics of the test en- 

vironment, two different environments were used, and the results from the two were 

compared. The two environments are the Interaction Modeler, and a collection of 

physical robots. 

Another motivation for using both a physical and a modeled environment is the 

attempt to isolate any observable inconsistencies in the performance of the same 

behaviors in the two different environments. In general, it is difficult to determine 

what features of the real world must be retained in a simulation and what can be 

abstracted away. By testing systems in the physical world some of the effects that arise 

as artifacts of simulation can be identified (Brooks 1991a). This is "the motivation 

behind using data from physical robots. By the same token, the current state of 

the art of physical robot environments imposes many constraints and biases on the 

types of experiments that can be conducted. Consequently, results from any physical 

environment must also be validated in an alternative setup. Two different robot types 

were used, in order to eliminate system-specific biases. 

Since this work is concerned with basic principles of interaction and group behavior 

rather than a specific domain, it is especially concerned with effects that are common 

to both the modeled and the physical worlds. 

4.2.2    The Agent Interaction Modeler 

The Interaction Modeler (IM) is a simulator which allows for modeling a simplified 

version of the physics of the world and the agent sensors and dynamics (Figure 4-1). 

The Modeler and the control software for the agents are written in Lisp. However, 

for purposes of realism, the modeler is divided into three distinct components: the 

simulator, the physics modeler, and the agent specification. The simulator executes 

the agent specifications and moves the agents according to their control algorithms 

and their sensory readings. The simulator implements the physics of the sensors, but 

not the physics of the world. The latter are implemented by the physics modeler 

that checks the positions and motions computed by the simulator against simplified 

physical laws, and applies corrections. The IM loops between the simulator and the 

physics modeler. 

The main purpose of the Interaction Modeler is to observe and compare phe- 

nomena to those obtained on physical robots. However, the Modeler is also useful 

for preliminary testing of group behaviors which are then implemented on physical 

robots. Although it is difficult to directly transfer control strategies from simulations 

50 



w  int   * Uli   m>i   lonti   mnumtm 
r*HIcle Modeller 

* 

* 

nxw-t   •   pr in1 

Figure 4-1: The interaction modeler environment. The agents are shown as black 
circles with white markers indicating their heading. The large rectangle indicates 
the boundaries of their workspace. The agents are equipped with local sensors and 

simplified dynamics. 
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Figure 4-2: Each of the Nerd Herd robots is a 12"-long four-wheeled base equipped 
with a two-pronged forklift for picking up, carrying, and stacking pucks, and with a 
radio transmitter and receiver for inter-robot communication and data collection. 

to the physical world, the modeler is useful for eliminating infeasible control strategies 

at an early stage, as well as for testing vastly larger numbers of agents, performing 

many more experiments, and varying parameter values. 

4.2.3    The Mobile Robot Herd 

Group behavior experiments are implemented and tested on a collection of 20 

physically identical mobile robots affectionately dubbed "The Nerd Herd." Each 

robot is a 12"-long four-wheeled vehicle, equipped with one piezo-electric bump 

sensor on each side and two on the rear of the chassis. Each robot has a two- 

pronged forklift for picking up, carrying, and stacking pucks (Figure 4-2). The forklift 

contains two contact switches, one on each tip of the fork, six infra-red sensors: two 

pointing forward and used for detecting objects and aligning onto pucks, two break- 

beam sensors for detecting a puck within the "jaw" and "throat" of the forklift, and 

two down-pointing sensors for aligning the fork over a stack of pucks and stacking 

(Figure 4-3). The pucks are special-purpose light ferrous metal foam-filled disks, 1.5 

inches diameter and between 1.5 and 2.0 inches in height. They are sized to fit into 

the unactuated fork and be held by the fork magnet. 

The robots are equipped with radio transceivers for broadcasting up to one byte 

of data per robot per second. The system uses two radio base stations to triangulate 
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Figure 4-3: Each of the Nerd Herd robots is equipped with contact sensors at the 
ends of the fork, piezo-electric bump sensors on each side and two on the rear of the 
chassis, and six infra-red sensors on the fork. Two forward-pointing IRs are located 
at the ends of the forks, two break-beam IRs in the jaw and throat of the fork, and 
two down-pointing IR for stacking pucks in the middle of each of the fork arms. 

the robots' positions. The radio system is used for data gathering and for simulating 

additional sensors. In particular, radios are used to distinguish robots from other 

objects in the environment, an ability that cannot be implemented with the on-board 

IR sensors1. 

The mechanical, communication, and sensory capabilities of the robots allow for 

exploration of the environment, robot detection, and finding, picking up, and carrying 

pucks. These basic abilities are used to construct various experiments in which the 

robots are run autonomously, with all of the processing and power on board. The 

processing is performed by a collection of four Motorola 68HC11 microprocessors. 

Two of the processors are dedicated to handling radio communication, one is used 

by the operating system, and one is used as the "brain" of the robot, for executing 

the down-loaded control system used in the experiments. The control systems are 

programmed in the Behavior Language, a parallel programming language based on 

the Subsumption Architecture (Brooks 1990a). 

1The IRs are all the same frequency and mechanically positioned for obstacle detection rather 
than communication. 
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4.2.4    Hardware Limitations 

Properties of physical hardware impose restrictions not only on the control strategies 

that can be applied, but alson on the types of tasks and experiments that can be 

implemented. Robot hardware is constrainted by various sensory, mechanical, and 

computational limitations. This section describes some relevant properties of the 

hardware we used and their effect. 

The robots' mechanical steering system is inaccurate to within 30 rotational de- 

grees. Furthermore, the position triangulation system works sufficiently well when 

the robots are within the predetermined range of the base stations. However, the 

exchange of information between the robots, which nominally ought to take place at 

1Hz, suffers from extensive loss of data. Consequently, as much as half of the trans- 

mitted data were lost or incorrect. The combined effect of steering and positioning 

uncertainty demanded that the robots move slowly in order to minimize error. Thus, 

the limiting factor on the robot speed was imposed by sensing and actuation, not by 

the controller. 

The infra-red sensors have a relatively long range (12 inches), and vary in sensi- 

tivity. Consequently, not only do different robots have different sensing ranges that 

cannot be tuned due to hardware restrictions, but the sensitivity between the two 

sides of the fork on a single robot varies as well. Consequently, the amount of time 

and effort required for detecting, picking up, or avoiding objects varied across robots 

and over time. Thus, the control system could not be dependent on uniformity of the 

group. 

This uncertainty and variability, although frustrating, is beneficial to experimental 

validity. For instance, hardware variability between robots is reflected in their group 

behavior. Even when programmed with identical software, the robots behave differ- 

ently due to their varied sensory and actuator properties. Small differences among 

individuals become amplified as many robots interact over extended time. As in na- 

ture, individual variability creates a demand for more robust and adaptive behavior. 

The variance in mechanics and the resulting behavior provides a stringent test for all 

of the experimental behaviors. 

4.2.5     Experimental Procedure 

All robot and modeler programs were archived and all basic behaviors were tested 

in both domains.  All robot implementations of basic and composite behaviors were 
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tested in at least 20 trials2. In the case of the Modeler, all behaviors were tested in at 

least 20 trials, with both identical and random initial conditions. Different strategies 

for the same group behaviors were tested and compared across the two domains. 

Modeler data were gathered by keeping a record of relevant state (such as position, 

orientation, and gripper state) over time. The same data were gathered in robot 

experiments through the use of the radio system. The system allowed for recording 

the robots' position and a few bytes of state over time. For each robot experiment, 

the robots' IDs and initial positions were recorded. Some of the experiments were 

conducted with random initial conditions (i.e., random robot positions), while in 

others identical initial positions were used in order to measure the repeatability of 

the behaviors. All robot data were also recorded on video tape, for validation and 

cross referencing. 

Throughout this chapter, the Interaction Modeler data are shown in the form of 

discrete snapshots of the global state of the system at relevant times, including initial 

state and converged state. The robot data are plotted with the Real Time Viewer 

(RTV), a special purpose software package designed for recording and analyzing robot 

data3. RTV uses the transmitted radio data to plot, in real-time, the positions of 

the robots and a time-history of their movements, i.e. a trail, the positions of the 

previously manipulated pucks, and the position of home. It also allows for replaying 

the data and thus recreating the robot runs. 

The robots are shown as black rectangles aligned in the direction of their heading, 

with their ID numbers in the back, and white arrows indicating the front. In some 

experiments robot state is also indicated with a symbol or a bounding box. In all 

shown data plots, the size of the rectangles representing the robots is scaled so as 

to maintain the correct ratio of the robot/environment surface area, in order to de- 

monstrate the relative proximity of all active robots. The bottom of each plot shows 

which of the twenty robots are being run. The corner display shows elapsed time, in 

seconds, for each snapshot of the experiment. Figure 4-4 shows a typical data plot. 

4.3    Basic Behavior Specifications 

This section gives formal specifications for each behavior in terms of the goal it 

achieves and maintains. 

Basic behaviors in 2D space are specified in terms of positions p, distances d, and 

2In the case of foraging, most data were obtained with another set of robots, described in sec- 
tion 8.1. 

3RTV was implemented and maintained by Matthew Marjanovic. 
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Figure 4-4: An example of a robot data plot: the robots are shown as scaled black 
rectangles aligned in the direction of their heading, with their ID numbers in the back, 
and white arrows indicating the front. The bottom of the plot shows which of the 
twenty robots are being run, and the corner display shows elapsed time in seconds. 

distance thresholds Savoid, ^disperse, and S, ^aggregate- 

K is the set of robots: K = {i?J,   1 < i < n 

Pi = Phorne 

dhome,i — \j\xhome ~~ xi)    + [Uhome        Vi) 

dij = J(xi - x3)
2 + (yt - yjf 

Using this notation, the following are specifications for the basic behavior goals. 
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Safe-Wandering: 

The goal of safe- -wandering is to keep moving while maintaining a minimum dis- 

tance 6avoid between agents: 

-r^O and 
dt  T V(i) ditj > 8avoid 

Following: 

The goal of following is to achieve an d maintain a minimum angle 9 between the 

position of the leader i relative to the follower j: 

i = leader, j = follower 

0 - i!Hpi-~pj) < ii ^IIIKK-^)II 
cosö 

9 = 0   => cos 9 = 0   => 

o   <   %■(*-») < II ^llllte -w) II 

Dispersion: 

The goal of dispersion is to achieve and maintain a minimum distance Sdisperse 

between agents: 

* \3)       i,j  ^     disperse Ctna   ^disperse ^ ^avoid 

Aggregation: 

The goal of aggregation is to achieve and maintain a maximum distance ^aggregate 

between agents: 

V(J) dhJ ^ ^aggregate 
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Homing: 

The goal of homing is to decrease the distance between the agent and a goal 

location called "home": 

dv' 
Vj    -^ -{Pj-Phome)  < 0 

4.4    Basic Behavior Algorithms 

This section presents the algorithms used to implement each of the proposed basic 

behaviors in the Interaction Modeler and on the robots. The algorithms are given in 

formal notation and in algorithmic pseudo code. All algorithms are formally expressed 

as velocity commands of the form: 

command (v) 

Two operators, J\f and C, are used for computing most of the algorithms. j\f is 

the neighborhood operator which, given a robot R and a distance threshold 6, 

returns all other robots within that neighborhood: 

J\f(i,S) = {j E i, ..n  |  dij < 6} 

C is the centroid operator which, given a robot i and a distance threshold 6, 

returns the local centroid: 

nc /a — ^ie-^(i,<?) Pj 
C^ö>-    |A/"M)| 

Cg is the global centroid operator: 

T^jen Pj cg = \n\ 

4.4.1     Safe-Wandering 

Strategies for moving while avoiding collisions are perhaps the most studied topic 

in mobile robotics. The work in this thesis was concerned with finding avoidance 

strategies that perform well in group situations and scale well with increased group 
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Avoid -Other-Agents: 

If an agent is within d. .avoid 

If the nearest agent 

turn right 

is on the left 

otherwise turn left. 

Algorithm 4.1: 

Avoid- -Everything-Else: 

If an obstacle is within d_avoid 

If an obstacle is on the right only, turn left. 

If an obstacle is on the Left only, turn right. 

After 3 consecutive . Ldent ical turns, backup and turn. 

If an obstacle is on both side s, stc p and wait. 

If an obstacle persi 3ts on both side SS, 

turn randomly and back up. 

Algorithm 4.2: 

sizes. Finding a guaranteed general-purpose collision avoidance strategy for an agent 

situated in a dynamic world is difficult. In a multi-agent world the problem can 

become intractable. 

Inspired by biological evidence which indicates that insects and animals do not 

have precise avoidance routines (Wehner 1987), we used the following general avoid- 

ance behavior: 

command ( v 
'  cos(6 + u)   , 

sin(8 + u) 

where 0 is i?'s orientation and u is the incremental turning angle away from the 

obstacle. A simple Avoid-Other-Agents rule was devised, as shown in Algorithm 4.1. 

The Avoid-Other-Agents behavior takes advantage of group homogeneity. Since 

all agents execute the same strategy, the behavior can rely on and take advantage of 

the resulting spatial symmetry. If an agent fails to recognize another with its other- 

agent sensors (in this case radios), it will subsequently detect it with its collision- 

avoidance sensors (in this case IRs), and treat it as a generic obstacle, using the 
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Safe—Wander: 
If an agent is within d.avoid 

If the nearest agent is on the left 

turn right 

otherwise turn left. 

If an obstacle is within d_avoid 
If an obstacle is on the right only, turn left. 

If an obstacle is on the left only, turn right. 

After 3 consecutive identical turns, backup and turn. 

If an obstacle is on both sides, stop and wait. 

If an obstacle persists on both sides, 

turn randomly and back up. 

Otherwise move forward by d_forward, turn randomly. 

Algorithm 4.3: 

Avoid-Everything-Else behavior, as shown in Algorithm 4.2. 

A provably correct avoidance strategy for arbitrary configurations of multiple 

agents is difficult to devise. In order to increase robustness and minimize oscilla- 

tions, our strategies take advantage of the unavoidable noise and errors in sensing 

and actuation, which result in naturally stochastic behavior. This stochastic compo- 

nent guarantees that the an avoiding agent will not get stuck in infinite cycles and 

oscillations. In addition to the implicit stochastic nature of the robots' behavior, 

Avoid-Everything-Else also utilizes an explicit probabilistic strategy by employing 

a randomized move. 

Variations of the above avoidance algorithm were experimented with and com- 

pared based on the amount of time the agent spent avoiding relative to the amount 

of time spent it moving about freely. This ratio is an indirect measure of the quality 

of the avoiding strategy in that the more time the agents spend avoiding the worse 

the strategy is. Avoiding time is dependent on the agent density, so it was used as 

a controlled variable in the experiments. The ratio used to evaluate avoidance is 

an indirect metric; a direct measure of being stuck would be more useful, but the 

robots did not have the appropriate sensors for determining this state. No significant 

performance differences were found among the similar strategies that were tested. 

The strategy for safe-wandering is the combination of the two avoidance strategies 
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with a default rule for moving with occassional changes of heading,  as  shown in 

Algorithm 4.3. 

4.4.2    Following 

Follow: 

If an agent is within d_follow 

If an agent is on the right only, turn right. 

If an agent is on the left only, turn left. 

Algorithm 4.4: 

Following is implemented with respect to the follower agent. It is achieved with a 

simple rule that steers the follower to the position of the leader: 

Command ( -  (pleader -P•follower) ) 
|| Pleader       Pfollower   || 

Following can be implemented as a complement of the Avoid-Everything-Else 

behavior, as shown in Algorithm 4.4. 

Figure 4-5 illustrates following on three robots. Additional data on following will 

be presented and analyzed in the next section. 

This approach to following models tropotaxic behavior in biology, in which two 

sensory organs are stimulated and the difference between the stimuli determines the 

motion of the insect (McFarland 1987). Ant osmotropotaxis is based on the differ- 

ential in pheromone intensity perceived by the left and right antennae (Calenbuhr & 

Deneubourg 1992), while the agents described here use the binary state of the two 

directional IR sensors. 

Under conditions of sufficient density, safe-wandering and following can produce 

more complex global behaviors. For instance, osmotropotaxic behavior of ants ex- 

hibits emergence of unidirectional lanes, i.e., regions in which all ants move in the 

same direction. The same lane-forming effect could be demonstrated with robots 

executing following and avoiding behaviors. However, more complex sensors must be 

used in order to determine which direction to follow. If using only IRs, the agents 

cannot distinguish between other agents heading toward and away from them, and 

are thus unable to select whom to follow. 
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Figure 4-5:   An example of following with three robots.   Continuous time trails are 
shown. In spite of deviations in individual paths, the queue is conserved. 
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Centroid-Disperse: 
If one or more agents are within d_disperse 

move away from Centroid_disperse. 

Algorithm 4.5: 

Neighbor-Disperse: 

Find 2 nearest neighbors within d_disperse 

Compute the angle between them, 

Compute the negative of the bisector, 

align in that direction and go forward. 

Algorithm 4.6: 

4.4.3     Dispersion 

A robust dispersion behavior can be designed as an extension of the existing safe- 

wandering. While avoidance in safe-wandering reacts to the presence of a single 

agent, dispersion uses the local distribution of all of the nearby agents (i.e., the 

locations of other agents within the range of the robot's sensors) in order to decide 

in which direction to move. The algorithm, shown in Algorithm 4.4, computes the 

local centroid to determine the local density distribution of nearby agents, and moves 

away from the highest density: 

command (  — r (C(i, SdispeTse) — Pi) ) 
II ^v^: ^disperse)       Pi  || 

Under conditions of high density, the system can take a long time to achieve a 

dispersed state since local interactions propagate far and the motion of an individual 

can disturb the state of many others. Thus, dispersion is best viewed as an ongo- 

ing process which maintains a desired distance between the agents while they are 

performing other tasks. 

A number of dispersion algorithms were tested in the modeled environment as well. 

As in the robot implementation, all of the approaches were based on detecting the 

position of the nearest agents. However, the modeler allowed for using more precise 

information, such as the exact distance and direction of the nearest neighbors. The 

dispersion algorithm shown in Algorithm 4.6 was most successful in terms of efficiency 

and reliability. 

Figure 4-6 shows the initial state and the final state of a dispersion experiment 
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Figure 4-6: An example of dispersion. Fifty agents are initially packed in one half 
of the workspace. d_dispersion is set to two times the agent's diameter. After 
approximately 20 time steps, the equilibrium is reached and all agents stop moving. 
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Figure 4-7:  Dispersion with three robots, initiated close to each other.  The robots 
found a static dispersed equilibrium state after 74 seconds. 

using the above centroid-based dispersion rule tested in the Interaction Modeler. 

Initially crowded in one part of the available free space, the agents apply the simple 

dispersion rule in order to establish cLdisperse or the maximum available inter- 

agent distance. Figure 4-7 shows the same dispersion algorithm applied to four robots. 

Dispersion was also evaluated based on time to convergence. Algorithms using 

the local centroid, and the nearest two agents, were compared to each other and to 

a potential field summation approach, in which the scalar distance from each nearby 

agent was proportional to the magnitude of a repulsive vector associated with it. 

The vectors of all nearby agents were summed and the agent moved in the direction 

of the resultant. The performance of the three algorithms was compared using two 

different initial conditions, random and densely packed. Both were tested in order 

to normalize for different density distributions through the lifespan of the task. As 

expected, the random initial position results in faster convergence times than a packed 

initial condition for all three algorithms. No statistically significant difference was 

found between the algorithms. 

4.4.4    Aggregation 

Aggregation is the inverse of dispersion: 

command ( 
+v0 

^[^t "aggregate)       Pi 
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Aggregate: 
If nearest agent is outside d_aggregate 

turn toward the local Centroid_aggregate, go. 

Otherwise, stop. 

Algorithm 4.7: 

Home: 

If at home 

stop. 

otherwise turn toward home, go. 

Algorithm 4.8: 

and can be implemented using the centroid operator as well, as shown in Algo- 

rithm 4.7. 

Aggregation was evaluated using the same criteria used in evaluating dispersion, 

as well as the same experiments. Analogous algorithms were implemented, using the 

local centroid, two nearest neighbors, and potential fields. Instead of varying initial 

conditions, aggregation algorithms were evaluated using two different terminating 

conditions. The more difficult terminating condition required that all agents form 

a single aggregate, whereas the easier of the two conditions required only that they 

form one or more groups in which all agents are within a fixed distance from their 

neighbors. As expected, the former terminating condition required more time to 

be achieved. Aside from that effect, no statistically significant difference was found 

between the algorithms. 

4.4.5     Homing 

The simplest homing strategy is a greedy local one: 

command ( rr (phome — Pi) ) 
|| Phome       Pi   \\ 

and implemented as a simple pursuit, as shown in Algorithm 4.8. 

Figure 4-8 illustrates the homing behavior of five robots using this strategy. The 

data illustrate that the actual trajectories are far from optimal, due to mechanical and 

sensory limitations, in particular due to the error in the sensed position.  The same 
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Figure 4-8: Homing behavior of five robots. Started in an arbitrary initial configu- 
ration, four of the robots reached the home region within 100 seconds, and the fifth 
joined them 30 seconds later. The trails reflect errors in position sensing, as well as 
interference between the robots as approach the home region. 
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Figure 4-9: Another example of homing behavior of five robots, started in arbitrary 
initial positions. Trail histories demonstrate drastic errors in positioning, indicated 
by large jumps in consecutive robot location. In particular, the triangular path shown 
for robot #17 is due to repetitive position errors. In spite of the errors, all of the 

robots successfully reached home. 
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Figure 4-10: Homing behavior of a large group of simulated agents. Increased inter- 
ference and competition for space is obvious around the goal region. 
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algorithm, when tested on the Interaction Modeler, produces more direct homing 

trajectories. Figure 4-9 shows another robot run of homing with five robots. In this 

run the entire time history of the robots' positions are shown, and the positioning 

errors can be easily seen. Nonetheless, all robots reach home. Figure 4-10 illustrates 

homing in simulation. 

Individual homing is effective as long as the density of agents is low. If enough 

agents are homing within confined space, they interfere with each other. In the case of 

our non-holonomic robots, interference had even more enduring effects on the group. 

Figure 4-11 shows the growing interference between robots as they approach the goal 

region. Entire time-trails are shown to demonstrate how much group interference 

slows down individual performance. 

Simulation and robot experiments described in this work show that interference 

increases if the agents have non-zero turning radii, unequal velocities, or are subject 

to sensor and control errors. All of the above conditions are common in situated 

agents, suggesting the need for some form of group or structured navigation, such as 

flocking, which will be introduced in an upcoming section. 

4.5    Basic Behavior Evaluation 

4.5.1     Empirical Evaluation of Basic Behaviors 

Evaluation is one of the most difficult components of research, and it is somewhat 

new to the field of AI and Experimental Robotics. By nature and by design, the two 

fields are based on building artificial computational and physical systems. However, 

results from such synthetic endeavors do not fall cleanly into the well defined set 

of evaluation criteria designed for natural sciences. Analyzing something one has 

designed is intrinsically different from analyzing something externally imposed. 

As a young and diverse field, AI still lacks standardized evaluation criteria. Con- 

sequently, it is left to each researcher to establish criteria that are both specific to the 

project and generally acceptable. The ideas proposed in this thesis are evaluated in 

two ways. The first addresses the merit of the general approach and its applicability 

to various domains. This evaluation is performed in the summary of the thesis, after 

the entire work has been presented. The second type of evaluation addresses the 

specific instantiation of the ideas in the spatial domain. This chapter presents the 

evaluation criteria applied to the implementations and performance of spatial basic 

behaviors and their composites. 

AI and Robotics research in general is exploratory and often prone to phenomeno- 
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Figure 4-11: Homing behavior of four robots. Home is located in the region (x,y) = 
(0..50,0..50). Trails are marked with different patterns in order to demonstrate the 
increase in interference with proximity, resulting in circuitous paths. 
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logical evaluation. To prevent this, all of the evaluation criteria for the experimental 

part of the work were established prior to testing and were applied to the perfor- 

mance of each of the behaviors as well as to their combinations. An earlier section 

on basic behavior selection elaborated the criteria for choosing the basic behavior set 

and hinted at some evaluation procedures. This section gives a detailed illustration 

of empirical basic behavior evaluation on the example of following. 

According to our pre-specified definition, a robot was said to be following when 

it maintained a minimal angle 9 between itself and the leader. Repeatability and 

robustness of following were evaluated based on its manifested average uninterrupted 

duration, i.e. average time to failure. This duration was almost completely dependent 

on how reliably the front-pointing sensors could detect the "leader". Figure 4-12 

illustrates continuous following behavior of 3 robots over a four minute period. The 

robot at the "front" of the queue is moving forward with its wheels slightly turned, 

thus tracing out a circular path. The other two robots follow their local "leader" 

according to the presented algorithm. The path of the first robot is smooth, while 

the followers oscillate in order to keep the robot ahead of them within IR range. One 

of the robots separated after two minutes, while the other two stayed together for the 

duration of the shown 243.3 second run. Figure 4-13 also illustrates the robustness 

of following; the robot in the lead moves about randomly and the follower keeps up 

throughout the duration of the run. 

The range of the IR sensors used was directed and short, requiring the agents to 

stay close together within the queue. Consequently, errors in steering could cause a 

follower to lose sight of the leader if it failed to turn sufficiently in order to maintain 

the leader in sight. If the two continued to move in the same direction, as they would 

during a higher-level task, the follower could catch up with the leader again. If not, 

they would separate. 

The narrow IR range explains why long queues and trains of agents were physi- 

cally difficult to maintain. However, queues were stable and insensitive to dynamic 

obstacles and sensory and mechanical irregularities in the form of sensor noise, errors 

in steering, and perturbations in velocity. Figure 4-14 illustrates following on three 

robots in the presence of sensory or effector error. The middle robot stalls due to 

some error, and the robot behind it stops as well, then turns and follows the leader, 

as it senses the first robot in its range. The middle robot activates again, senses the 

second robot within its range, follows it, and the queue is maintained. Figure 4-15 

demonstrates following in the presence of static constraints in the environment, such 

as walls and corners. The robots are able to avoid the walls and maintain the queue. 

Following was also evaluated based on scalability in order to test its performance 

as agents are added and removed.   The data above demonstrate the behavior that 
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Figure 4-12: Continuous following behavior of 3 robots over 4.8 minutes. In the initial 
conditions, the wheels of the front robot are turned sideways, resulting in a circular 
trajectory. The robots reliably maintain a stable queue in spite of individual local 
variations in control. 
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Figure 4-13: Continuous following performance of two robots over 4.9 minutes. The 
third robot (#20) is out of range so it does not join the others. The robot in the 
front moves about randomly, while the follower stays close behind. 
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Figure 4-14: Performance of following with three robots in the presence of obstacles, 
sensory, and steering errors that cause the middle robot stall. The third robot passes 
it and maintains the first robot in its range. The middle robot senses the now-second 
robot within its range, follows it, and the queue is maintained. 
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Figure 4-15: Performance of the following behavior of three robots in the presence of 
external obstacles and constraints. The robots maintain a queue while avoiding the 

wall and going around a corner. 
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Figure 4-16: Following behavior of 2 robots. The x-axis plots individual trials, the 
y-axis plots the duration of uninterrupted following. The mean duration is indicated 
with the dashed line. 
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Figure 4-17: Following behavior with 3 robots. The x-axis plots individual trials, the 
y-axis plots the duration of uninterrupted following, in seconds. The mean duration 
is indicated with the dashed line. 
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results if an agent stalls, or is removed from the middle of the queue. The next set of 

data deals with the performance as new agents are added to the queue, the situation 

that is expected to happen more commonly, since following is, at a global level, a 

recruiting behavior. 

Figure 4-16 demonstrates average following time for two robots in multiple runs. 

Figure 4-17 plots following data for three robots. The mean following time for two 

agents is nearly identical as that for three. This is exactly as expected, since following 

is a completely local behavior between two agents. The failure of any pair is as likely 

as the failure of any other, and the pairs are mutually independent, soq agents can 

be dynamically added and removed from the ends of the queue without affecting the 

rest. 

This section has illustrated the criteria we used to evaluate the proposed basic 

behaviors. The evaluation process was illustrated on the example of following. The 

described criteria were systematically applied to all of the other basic behaviors as 

well. 

4.5.2    Evaluation of Heterogeneous Groups 

An obvious alternative for a fully distributed system of identical agents is a hierar- 

chical distributed system. In order to evaluate the performance of the homogeneous 

basic behaviors, they were compared to particular hierarchical implementations. This 

section describes the performance of a hierarchical group of agents on two basic be- 

haviors: aggregation and dispersion. These two behaviors were chosen because they 

can be stated in terms of achievement goals and, given sufficient space, can reach a 

static state. The algorithms were evaluated based on the time or the number of steps 

required to reach that well-defined state. 

A version of hierarchical agents was implemented by classifying the agents into 

a total order, based on a randomly assigned unique ID number, thus simulating an 

established pecking order in the group (Chase, Bartolomeo k Dugatkin 1994, Chase 

1993, Chase 1982, Chase k Rohwer 1987). While in homogeneous algorithms all 

agents moved simultaneously according to identical local rules, in the hierarchical case 

the ID number determined which agents were allowed to move while others waited. In 

all cases, a simple precedence order, a spatially-local hierarchy, was established such 

that within a small radius the agent with the highest ID got to move. Multiple types 

of dispersion and aggregation algorithms were tested with such hierarchical agents. 

Using the Interaction Monitor, 20 experiments were conducted with each group 

size (3, 5, 10, 15, and 20 agents) and each of the algorithms. Additionally, the algo- 

rithms were tested on two different degrees of task difficulty. Aggregation was tested 

78 



4J 
O 
Ö 
<L> 
M u 
> c o 
U 

on 
8     10    12    14    16    18    20 

Number of Agents 

Figure 4-18: The performance of two different aggregation algorithms based on time 
required to reach static aggregated state. Two termination conditions were tested: 
a single group (data points shown with boxes) and a few stable groups (data points 
shown with dots). The performance of hierarchical algorithms is interpolated with 
solid lines while the homogeneous ones are interpolated with dotted lines. 

on two terminating conditions: a single aggregate containing all of the agents, and a 

small number of stable aggregates. The former terminating condition is more diffi- 

cult. Similarly, dispersion was tested on two initial conditions: a random distribution 

of initial positions, and a packed distribution in which all of the agents start out in 

one half of the available space. The latter condition is more difficult. 

It was found that, in the case of aggregation, hierarchical strategies performed 

somewhat better than our homogeneous approaches. Figure 4-18 plots the average 

number of moves an agent takes in the aggregation task against the different group 

sizes and the two different terminating conditions: a single aggregate and a few stable 

groups. Both hierarchical and homogeneous algorithms behaved as expected, per- 

forming better on the simpler of the two terminating conditions. Their performance 

declined consistently with the growing group size. 

Unlike aggregation, in the case of dispersion, homogeneous strategies outper- 

formed hierarchical ones. Figure 4-19 plots the average number of moves an agent 

makes in the dispersion task for the different group sizes on two different initial con- 

ditions: a random distribution, and a packed initial state. Again, both hierarchical 

and homogeneous algorithms improved with the easier initial conditions. 

Although the performance difference between the homogeneous and hierarchical 

algorithms was repeatable and consistent, it was small, and its magnitude barely 

surpassed the standard deviation among individual trials for each of the algorithms 

and group sizes. The standard deviation was particularly significant in the case of 

small (3 and 5) group sizes. Thus, no statistically significant difference was found in 
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Figure 4-19: The performance of two different dispersion algorithms based on the 
time required to reach static dispersed state. Two initial states were tested: a random 
distribution (data points shown with stars) and a packed distribution (data points 
shown with crosses). The performance of the hierarchical algorithms is interpolated 
with solid lines while the homogeneous ones are interpolated with dotted lines. 

global performance of hierarchical and flat algorithms for aggregation and dispersion. 

Furthermore, the slight differences that were detected between the two strategies 

would mostly likely be negligible on physical agents, due to sensor uncertainty and 

effector errors. 

We believe that the similarity in performance between the homogeneous and sim- 

ple heterogeneous algorithms is caused by the following: 

• Functionally homogeneous agents: In spite of the linear priority ordering, 

the agents are fundamentally homogeneous since they are functionally indistin- 

guishable. Thus, the hierarchical relationships between agents are spatially and 

temporally independent, since the agents keep no history of their past encoun- 

ters with each other. 

• Simplicity of behavior: The only behavior being observed is spatial, in the 

domain where the consequences of actions of identical agents have no time- 

extended consequences. 

• Large group sizes: In sufficiently large groups of functionally identical agents, 

temporary effects are averaged out as fluctuations and noise. This property 

is crucial for producing reliable global behavior in the presence of local per- 

turbations, and is observable in the shown data: the general trends in global 

performance are consistent even although the standard deviation among trials 

is quite large. 
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Figure 4-20: The initial conditions used for comparing dispersion algorithms. Maxi- 
mally packed states for five different group sizes (3, 5, 10, 15, and 20) were tested. 

The experiments comparing simple hierarchical and homogeneous algorithms de- 

monstrate that, in the described domain, simple hierarchical strategies do not affect 

the global performance because their impact on the global behavior is negligible. More 

complex hierarchical strategies could be devised, in order to assure their influence on 

the global behavior, but would require an increased perceptual and cognitive over- 

head, such as perhaps keeping a history of past encounters and models of previously 

encountered agents. This data permit us to hypothesize the following: for simple 

spatial domains 1) simple homogeneous solutions can work quite well, and 2) more 

complex strategies requiring individual agents to perform recognition, classification, 

and representation may be are required to significantly improve group performance. 

4.5.3     Evaluating Distributed v. Centralized Algorithms 

The beginning of the thesis compared centralized and distributed approaches, and 

argued that centralized approaches do not scale for the types of systems this thesis 

has dealt with. For the purposes of comparison, however, a set of special case scenarios 

was constructed, for which optimal centralized solutions could be computed for the 

dispersion task. While computing the optimal dispersion strategy for an arbitrary 

configuration of agents is difficult and, for large group sizes, intractable, the strategy 

can be computed for special classes of initial positions. 
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Figure 4-21: The performance of the optimal global "total knowledge" algorithm 
for dispersion (data points shown with diamonds) compared with the hierarchical 
and homogeneous dispersion strategies (data points shown with boxes and crosses, 

respectively). 

Packed configurations of agents were designed for five group sizes: 3, 5, 10, 15, 

and 20, as shown in Figure 4-20. These configurations were chosen for two reasons: 1) 

they presented challenging initial conditions for dispersion, and 2) optimal dispersion 

solutions could be computed by taking advantage of the symmetry of configurations. 

Optimal solutions employed the general strategy of moving the outer agents first until 

enough space is cleared for the next layer to move, and so on. The average number of 

moves per agent for obtaining a dispersed state was computed for each of the group 

sizes. 

The "total knowledge" algorithm was tested along with the existing hierarchical 

and homogeneous algorithms on the Interaction Modeler. The data for the distributed 

algorithms were averaged over 20 trials for each group size. Figure 4-21 plots the 

performance of the three algorithms. 

Not surprisingly, the total knowledge algorithm performs the best. However, it 

is important to note that although its performance declines slower than that of the 

distributed algorithm, the two are only offset by a constant factor. Given that the 

performance of the total knowledge algorithm is not practically attainable in real- 

time, the distributed alternative with minimum computational and sensing overhead 

presents a useful alternative. 
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4.6     Summary 

This chapter has introduced the methodology for selecting basic behaviors and demon- 

strated it on the spatial domain. A basic behavior set consisting of safe-wandering, 

following, dispersion, aggregation, and homing was proposed, implemented in two dif- 

ferent experimental environments, and tested in simulation and on physical robots. 

Experimental data were evaluated using a collection of criteria we specified a priori. 

The performance of the basic behaviors was also tested compared against hierarchical 

and total knowledge approaches. 

The next chapter introduces ways in which the described basic behaviors can 

combined in order to be achieve a variety of higher-level goals and tasks. 
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Chapter 5 

Combining Basic Behaviors 

5.1     Two Types of Behavior Combination 

Basic behaviors are designed to be a substrate for a variety of more complex compound 

group behaviors for a given domain (Figure 5-1). Generating compound behaviors 

requires applying some kind of a combination operator whose properties are well 

understood and which produces the desired output composite behavior. This is is 

considered to be one of the challenges of behavior-based control, i.e., arbitration, the 

problem of coordinating the activity of multiple input behaviors in order to produce 

desired output behavior. 

Depending on the complexity of the system, arbitration can and usually must be 

performed at multiple points. One level of arbitration can be achieved by designing 

mutually exclusive behavior conditions (Mataric 1992c). Creating a unique one-to- 

one mapping between conditions and behaviors guarantees a mutually exclusive set 

of condition-action couplings. In contrast, if the mapping is one-to-many, so that a 

condition can result in more than one possible behavior, then there is a possibility 

that two or more behaviors may be in conflict. 

Mutually exclusive behavior conditions are sufficiently powerful for arbitrating in 

a system that performs only one behavior at a time. However, in more complex sys- 

tems, multiple behaviors can contribute to the output (Parker 1994, Payton, Keirsey, 

Kimble, Krozel k Rosenblatt 1992, Ferrell 1993). Consequently, most practical sys- 

tems use mutually exclusive behavior conditions within a coherent layer or submodule 

of the system dealing with a particular coherent set of tasks. Between modules and 

layers another level of arbitration is necessary which either implements a type of a 

sum of the inputs or a switch. The general form of a behavior-based system involves 

such combination operators at one or more levels. 
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Figure 5-1: Basic behaviors can be combined to generate a variety of more complex 
behaviors. 
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Figure 5-2: The control architecture for generating group behaviors consists of di- 
rect and temporal combinations of subsets from a fixed basic behavior set. Direct 
combinations are marked with ©, temporal combinations with (g). 
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Figure 5-3: The general form of direct behavior combinations. Outputs from two or 

more behaviors are summed. 

The architecture proposed here for combining basic behaviors has the described 

general form. In order to take advantage of the expressive combinatorial power of 

the basic behaviors, the architecture uses both combination operators: behaviors can 

be combined directly, by executing multiple behaviors at once, and temporally, by 

sequencing the behaviors one at a time. Direct combinations allow for multiple con- 

currently active behaviors to contribute to outputs. Temporal combinations assure 

a coherent sequence of the outputs. The two types of combination operators, ap- 

plied to the fixed set of basic behaviors, can generate an unbounded repertoire of 

collective behaviors, because temporal combinations can extend arbitrarily in time 

(Figure 5-2). The following sections describe the operators and demonstrate them 

with implemented compound behaviors. 

5.1.1     Direct Combinations of Basic Behaviors 

A direct combination of behaviors is some function of the outputs of a subset of the 

basic behaviors, as illustrated in Figure 5-3. In the spatial domain, the outputs of all of 

the basic behaviors are in the form of direction and velocity vectors, so appropriately 

weighted sums of such vectors directly produce coherent higher-level behaviors. This 

method is illustrated by using direct combination to implement flocking. 

Flocking is defined as collective motion that satisfies the following constraints: all 

of the agents within sensing range of each other must stay within a flocking range 

from their neighbors as they move. Unlike aggregation, flocking not only requires the 

agents to stay together, but also to move toward a goal, generically referred to as 

home. Formally: 

V(i, j) dij < 6fiock and —^- ■ (Cg - Phome) < 0 

Flocking can be implemented by combining the outputs of safe-wandering, aggre- 

gation, dispersion, and homing, such that the specified constraints are satisfied, as 
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Figure 5-4: The implementation of flocking as a combination of safe-wandering, dis- 
persion, aggregation, and homing. Safe-wandering, aggregation, and dispersion pro- 
duce robust flocking, and homing gives the flock a goal location and direction to move 
in. 

herding 

e 
flocking surrounding 

e e 
homing    safe-wandering    dispersion     aggregation       following 

Figure 5-5: An example of direct basic behavior combination within a higher-level 
task. 

shown in Figure 5-4. Intuitively, aggregation keeps the robots from getting too far 

from each other, dispersion keeps them from getting too close, and safe-wandering 

prevents each agent individually, and thus the flock as a whole, from colliding with 

any non-agent obstacles, and homing moves the flock toward some goal. Flocking can 

be further reduced to a combination of just safe-wandering, aggregation, and homing 

for a range of values of Sfiock, such that 8jiock < t'aggregate-, so that safe-wandering also 

has a dispersing effect. 

The given set of basic behaviors allows for many other direct composites, such as 

surrounding, a combination of aggregation and following, and herding, a combination 

of surrounding and flocking, as shown in Figure 5-5. 

For any given high-level goal, the structure of direct behavior combination is a 
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Figure 5-6: Direct behavior combinations use continuous summing functions. Con- 
sequently, the same basic behaviors can be reused and recombined repeatedly within 
a common higher-level goal. In this example, two types of surrounding are used, 

depending on the sensory conditions. 
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Figure 5-7: The general form of temporal behavior combinations switches between 
mutually exclusive behaviors. Only one behavior is active at a time, resulting in a 
behavior sequence triggered by different sensory conditions. 

directed acyclic graph (DAG) with behaviors as nodes and inheritance relations as 

arcs. The semantics of the arcs are identical to the semantics of the © and (g) combi- 

nation operators. Basic behaviors are the originator nodes of the graph. Except for 

the final high-level behavior node, all other nodes are combinations of originator and 

other intermediate nodes in the graph. Figure 5-5 illustrates an example of a graph 

in which aggregation is shared by two intermediate nodes: flocking and surrounding. 

Since behavior combinations are based on continuous function (weighted sums) of the 

input parameters, the same nodes can be used in multiple combinations. For example, 

figure 5-6 illustrates the use of the same basic behaviors (aggregation and following) 

to construct two different types of surrounding behaviors, and then combining both 

in herding. 

5.1.2    Temporal Combinations of Basic Behaviors 

Basic behaviors and their direct combinations achieve and maintain single goals. 
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Figure 5-8: The implementation of foraging using a temporal combination of safe- 
wandering, dispersion, homing, and following. Each triggered by different sensory 
conditions, the behaviors collectively result in foraging. 

For example, dispersion achieves the goal of establishing a minimum distance between 

all of the agents while following maintains the goal of preserving a queue of moving 

agents each of which is within a given distance and direction from its neighbors. In or- 

der to achieve higher-level tasks defined by multiple sequential goals, basic behaviors 

must be properly temporally combined. 

Such combinations are temporal sequences of basic behaviors, each of which is 

triggered by appropriate conditions in the environment, as shown in Figure 5-7. Com- 

bining interactions temporally relies on the agents' ability to perceive the state that 

triggers a behavior change. Given this ability, simple finite state machine controllers' 

can be designed to generate a variety of multi-goal behaviors. This method is illus- 

trated on an implementation of foraging, a group task of gathering objects ("food") 

from the environment (Figure 5-8). 

In foraging, the high-level achievement goal of the group is to collect objects from 

the environment and deliver them home. This complex behavior is a prototype for 

a variety of tasks including harvesting, garbage collection, and clearing toxic spills 

and mine-fields. For the foraging task, in addition to having the basic behavior 

repertoire, individual agents are also able to search for pucks, pick them up, and 

drop them. Furthermore, foraging uses a restricted notion of kinship defined by the 

agents' "puck state:" any two robots without pucks are "kin", as are any two that 

are carrying pucks. Since the robots cannot directly sense each other's external state, 

puck state is is broadcast by each of the robots within a limited range via the radios. 

Foraging is initiated by dispersion1, and then safe-wandering. Finding an object 

triggers homing.   Encountering another agent with a different immediate goal, as 

1Floreano (1993) shows that evolved systems of ants favor dispersion as the first step in foraging. 



Condition Behavior 

at-home? have-puck? crowded? behind-kin? sense-puck? 

0 0 0 0 0 safe-wandering 

0 0 0 1 0 following 

0 0 1 0 0 dispersion 

0 0 1 1 0 dispersion 

0 1 0 0 0 homing 

0 1 0 1 0 following 

0 1 1 0 0 dispersion 

0 1 1 1 0 dispersion 

1 0 0 0 0 safe-wandering 

1 0 0 1 0 following 

1 0 1 0 0 dispersion 

1 0 1 1 0 dispersion 

1 1 0 0 0 drop-puck 

1 1 0 1 0 drop-puck 

1 1 1 0 0 drop-puck 

1 1 1 1 0 drop-puck 

0 0 0 0 1 pickup-puck 

0 0 0 1 1 pickup-puck 

0 0 1 0 1 pickup-puck 

0 0 1 1 1 pickup-puck 

0 1 0 0 1 homing 

0 1 0 1 1 following 

0 1 1 0 1 dispersion 

0 1 1 1 1 dispersion 

1 0 0 0 1 safe-wandering 

1 0 0 1 1 following 

1 0 1 0 1 dispersion 

1 0 1 1 1 dispersion 

1 1 0 0 1 drop-puck 

1 1 0 1 1 drop-puck 

1 1 1 0 1 drop-puck 

1 1 1 1 1 drop-puck 

Table 5.1: The controller for foraging. For brevity, conditions for avoidance are 
left out. Whenever one is sensed, the agent executes the avoidance rules of safe- 

wandering. 
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Figure 5-9: An example of applying both direct and temporal combinations to the 
same basic behaviors to generate various higher-level behaviors. In this case, safe- 
wandering is used to generate flocking, and it is used in foraging. Similarly, aggregation 
is used in foraging and in surrounding. 

manifested by its external state, e.g., not carrying a puck induces safe-wandering 

away from the object. Conversely, encountering kin triggers flocking. Reaching home 

and depositing the object triggers dispersion if multiple robots are at home, or safe- 

wandering if the robot is alone. Figure 5.1 shows the controller for the task. 

Foraging demonstrates how basic behaviors can be temporally combined into a 

higher-level compound behavior. The combination is simple in that conflicts be- 

tween two or more interacting agents, each potentially executing a different behavior, 

are resolved uniformly due to agent homogeneity. Since all of the agents share the 

same goal structure, they will all respond consistently to environmental conditions. 

For example, if a group of agents is following toward home and it encounters a few 

agents dispersing, the difference in the agents' external state will either induce fol- 

lowing agents of the same kind or avoiding agents of any other type, thus dividing or 

"specializing" the group again. 

Foraging is just one example of a variety of spatial and object manipulation tasks 

that can be implemented with the described architecture and the given basic behav- 

iors. Other tasks include sorting objects, building structures, surveying and mapping 

an unknown territory, and many others. 

Figure 5-9 illustrates how the same basic behaviors, in this case dispersion and 

safe-wandering, can be used in a direct combination, flocking, and also in a temporal 

combination, foraging. 

The next section demonstrates robot implementations of compound behaviors. 
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Flock: 
Sum outputs from Safe—Wander, Disperse, Aggregate, and Home. 

Algorithm 5.1: 

5.2    Implementations of Compound Behaviors 

5.2.1     Flocking 

As described earlier, flocking is a form of structured group movement that serves to 

minimize interference, protect individuals, and enable efficient information exchange. 

Flocking was implemented with a simple algorithm shown in Algorithm 5.1. 

The choice of weights on the different behavior outputs was determined by the 

dynamics and mechanics of the agents, the ranges of the sensors, the agents' turning 

radii, and their velocity. In the robot implementation, flocking consisted of a combi- 

nation of safe-wandering and aggregation only, by using the appropriate combination 

Of Savoid and 8aggregate thresholds. 

Like following, flocking is a coordinated-motion behavior which is best evaluated 

by testing its duration, repeatability and robustness. As expected, performance of 

flocking was dependent on the size of the flock. Small flocks, consisting of four or 

fewer agents, were less stable2, while larger flocks remained stable even if any of the 

agents failed due to mechanical problems. Figure 5-10 demonstrates just such a case, 

in which one of the agents' position sensors failed and it quickly diverged from the 

flock. 
The utility of flocking can easily be seen through its interference-minimizing prop- 

erties. For instance, it is much more efficient than individualistic homing as the num- 

ber of homing agents increases. Although flocking involves a compromise between 

individual and group goals, which may make an individual agent's path locally sub- 

optimal, the collective behavior is more efficient in that all of the agents get to the 

destination faster than they do, on the average, using individualist greedy homing 

strategies3. 

Typical flocking behavior is shown in figures 5-11, 5-12, and 5-13. Flocking was 

also tested in more challenging environments. For example, a barrier roughly the size 

of two robots was presented in front of the flock as the flock was moving. As expected, 

2According to the definition of stability given in Chapter 4.1 
3Trafnc laws are human forms of following and flocking. They impose structure on the collective 

motion so as to minimize average interference. 
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Figure 5-10: Flocking behavior of five robots. One of the robots separates, without 
affecting the behavior of the others. Due to a failure of the position sensors, the robot 
falls behind the group and cannot rejoin them. The rest of the robots reorganize and 
maintain the global structure. 
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Figure 5-11: Flocking behavior of the same five robots in another trial. The robots 
maintain a coherent flock, in spite of the often large position errors sensed by individ- 
uals. These errors are manifested in the variability in the spacing between the robots 

as the flock moves. 
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Figure 5-12: Flocking behavior of four robots. The robots are initiated in a line and 
they quickly move into a flock. There are no fixed leaders so robots at the front of 
the flock occasionally exchange places with others due to velocity and other control 
variations, all the while maintaining the flock formation. 
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Figure 5-13: Another run of four flocking robots. The robots are started in a difficult 
initial configuration: facing each other. After an initial reordering they establish a 
flock and maintain it as they move across the workspace. As shown in the last frame, 
the position sensors on robot #2 faltered so its path appears discontinuous, but its 

actual trajectory keeps it with the flock. 
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the flock split into two groups around the obstacle and rejoined on the other side. 

Empirical data, for this and other experiments is available on video tape. 

The idea, that flocking can be generated b)^ simple rules has been popular among 

many researchers. For example, DeScnutter k, Nuyts (1993) and Goss, Deneubourg, 

Beckers & Henrotte (1993) show a similar approach by demonstrating how simple 

rules can result in gull flock formation in simulation. Even more directly, Reynolds 

(1987) presents an elegant graphical simulation of bird flocking. However, the robot 

implementation required more rules due to the more complex dynamics. 

5.2.2     Foraging 

Foraging consists of finding pucks in the environment, picking them up, and de- 

livering them to the home region. An efficient implementation of foraging serves to 

validate our proposed behavior combination strategy. Foraging was tested on two 

different types of robots and environments, and its performance was repeatable and 

robust. 

The shown implementation of foraging did not attempt to directly optimize the 

amount of time required to collect all of the pucks, although this criterion was in- 

directly minimized by diminishing interference between agents. Foraging was tested 

to validate that basic behavior sequencing was appropriate and robust, and that the 

higher-level task of collecting pucks was accomplished effectively. Figures 5-14, 5-15, 

and 5-16 demonstrate typical foraging performance by showing snapshots at differ- 

ent stages during the foraging process. Most foraging runs were terminated after 15 

minutes, at which time about two thirds of the pucks were collected. The duration 

of the runs was largely due to the inefficient search strategy: the robots did not 

remember where the pucks were. An improved strategy, in which the robots remem- 

bered the location of the pucks and returned to it repeatedly until all of the pucks 

were transported, was used as a part of the group learning algorithm described in 

Chapter 8. 

Not taking advantage of exact puck location was at least partially justified since, 

over the course of an experimental run, the pucks outside the home region were pushed 

around and gradually dispersed over an expanding area. This, in turn, affected the 

global behavior of the system, since the more dispersed the pucks became the more 

likely the robots were to stumble onto one of them by random search. 

Puck dispersion was a side-effect, a result of the dynamics of interaction between 

the robots and the environment. It was also an influence on the dynamics since it 

affected the global behavior and performance of the system. Although a relatively 

simple effect, it would not be predicted by standard analytical models since it would 
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Figure 5-14: Foraging behavior of six robots. The robots are initiated in the home 
region. The pucks are initially clustered at the bottom center of the workspace. After 
dispersing, they safe-wander and search for pucks, pick them up, and take them home. 
If they encounter another robot with a puck while they are carrying one, they follow, 
as shown in the third frame of the data. After some time the pucks accumulate in 

the home region. 
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Figure 5-15: Foraging behavior of seven robots. In this experiment more robots 
effectively manage to transport a larger number of pucks home than the group of six 
robots shown above. Boxes around robots indicate they are executing avoidance in 
safe-wandering (e.g. see robots #14 and #16 in the last frame of the data, avoiding 
the walls of the workspace). 
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Figure 5-16: Another example of foraging behavior with seven robots. As before, the 
robots gather around the area with pucks (at the "top" of the workspace), picking 
them up, and gathering them in the home region. Interference is resolved by safe- 

wandering and following. 
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likely fall below the granularity of the model precision level. 

In our system, foraging could be accomplished by a single agent, so the task itself 

does not require cooperation. Thus, the goal of the collective solution is to accel- 

erate convergence with the growing size of the group. Arkin et al. (1993) describe 

simulation results of a similar task with varying numbers of agents and inter-agent 

communication. Complementary to the results presented here, they find that perfor- 

mance improves with simple communication. They also report an improvement of 

performance with growing group size up to a fixed point for the particular retrieval 

and gathering task. This result is in agreement with the results shown here that 

illustrate the interference effects of larger and thus higher-density groups in confined 

workspaces. Given the number of pucks to be collected, the collective solutions pro- 

posed here always outperformed a single agent, but as the group size grew, so did 

the importance of behaviors that minimized interference. This relationship will be 

further elaborated on in Chapter 8 which describes the approach to group learning. 

5.2.3     Docking &: Parking 

This section gives another example of combining behaviors through the use of tempo- 

ral switching and environmental constraints. Achieving arbitrary agent behaviors can 

be difficult as there is a often minimal match between the dynamics of the agent and 

its environment and the human-specified task. We now describe how docking, another 

group behavior that, if programmed top-down, would be difficult to achieve, can be 

simply generated by taking advantage of the system dynamics, and the interaction of 

simple basic behaviors. 

Docking behavior "parks" the robots along some kind of a boundary. In general, 

getting a collection of robots to park along a line is difficult. A guaranteed solution 

can be found by geometric planning, but is intractable for uncertain, dynamic envi- 

ronments with multiple agents. In contrast to a tightly-controlled top down approach, 

we demonstrate the following a bottom-up alternative. 

Our docking algorithm takes advantage of environmental constraints, i.e. the 

existence of other agents, the boundary, and the walls (see figure 5-17). The individual 

robot's goal is to keep moving safely and avoid collisions and drops. The collective 

goal is to achieve a state in which all of the robots are parked along the edge of a 

step, which they can detect using their downward-pointing IR sensors. 

The algorithm consists of two behaviors: 

• safe-wandering - keeps the robot moving forward and avoiding collisions, 

• avoiding-drops - stops the robot from falling off an edge. 
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Figure 5-17:  Docking behavior in progress, based on the constraints of the environ- 
ment and three rules: avoid, go forward, and don't fall of the edge. 

The behaviors are combined, in parallel, with avoiding behaviors taking prece- 

dence over wandering, as shown in Algorithm 5.2 below. 

Dock: 

If ground 
stop. 

cannot be sens ed 

If another robot is near by 
avoid. 

If all is clear 
go forward. 

Algorithm 5.2: 

If the three behaviors are executed in a confined space with a vertical boundary, 

they will produce in a tight docking behavior. Since no position control is used, no 

specific docking positions are determined a priori. The algorithm is insensitive to 

initial conditions, to the number of robots, and to their avoidance strategies. 

We tested the above algorithm in over 20 trials on groups from one to five robots. 

In all cases, it quickly resulted in all of the robots lined up along the edge, as shown 

in Figures 5-18 and  5-19. 

Although we only explored the simplest case of docking, the environment con- 
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Figure 5-18: The end result of the docking behavior of five robots. 
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Figure 5-19: Another view of the docking robots. 
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straints can be eliminated if the robots use some position control. Similar simple 

behaviors and combinations have been used in other behavior-based systems. For 

instance, Mataric (1990a) uses three rules to achieve boundary following on a sonar- 

based mobile robot. Steels (1994a) implements docking onto a charger with two 

rules: one that approaches a light source above the charger, and another that avoids 

obstacles. 

5.3     Combining Behaviors on Different Agents 

This chapter has discussed ways of combining behaviors into higher-level compos- 

ites, within a control system of a single agent. The described direct and temporal 

combination operators both rely on all of the agents' ability to respond to external 

conditions consistently. As long as all of the agents follow consistent social rules, i.e. 

use compatible social repertoires, conflict within and between agents is minimized. 

Homogeneity simplifies the task of combining behaviors, since the concern of conflict 

between behaviors is reduced by consistent social rules followed by all the agents. 

However, although our agents are homogeneous in terms of their high-level goals, 

their immediate goals may differ at any point in time, i.e. they can be "locally 

heterogeneous." The arbitration of an encounter between two or more such agents is 

in fact analogous to the behavior selection problem at the level of control of a single 

agent. Consequently, similar strategies apply to the multi-agent case: the behaviors 

of the agents can be combined in some form, or one of the agents will take precedence 

over the rest. 
As previously argued (Mataric 1992a), an unambiguous precedence hierarchy be- 

tween the competing behaviors or agents is the simplest way to guarantee a globally 

consistent result. Thus, ensuring minimal higher-order effects and interference in a 

(locally) heterogeneous society can be accomplished by a strict hierarchy of control. 

This type of social organization appears quite stable and ubiquitous in animal and 

human societies. It often employs rather elaborate dominance structures requiring 

the maintenance of identities, distinguishing characteristics, and histories of previous 

encounters (McFarland 1987, Gould 1982), thus demanding higher cognitive over- 

head than the agents we have experimented with. As discussed in Section 4.5.2, such 

overhead may be necessary for certain types of complex, time-extended interactions. 
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5.4     Summary 

This chapter has addressed methods for minimizing interference between behaviors 

on a single agent and behaviors between two or more interacting agents. A gen- 

eral architecture was introduced for combining a finite set of basic behaviors into an 

unbounded repertoire of higher-level behaviors based on direct and temporal com- 

binations. The two types of combination operators used by the architecture were 

demonstrated on compound spatial behaviors of flocking, foraging, and docking, im- 

plemented and tested on the collection of mobile robots. 

The next chapter introduces a methodology for automating the behavior combi- 

nation process through the use of learning. 
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Chapter 6 

Learning in Situated Systems 

So far we have dealt with the problem of synthesizing intelligent group behavior by 

hand. We now extend the presented ideas to include learning, an ability that allows 

the agent to acquire new and adapt old behaviors for individual and group benefit. 

6.1     Motivation 

Why learn? 

Learning has two purposes universal across domains. It is useful for: 

1. adapting to external and internal changes 

2. simplifying built-in knowledge 

The ability to cope with changes in the environment is termed adaptability. It 

allows agents to deal with noise in their internal and external sensors, and with 

inconsistencies in the behavior of the environment and other agents. Adaptability 

comes at a phenotypical and cognitive cost, so creatures are adapted only to a specific 

niche. Consequently, all creatures, natural and otherwise, fail at their tasks under 

certain conditions. The purpose of learning is to make the set of such conditions 

smaller. 

Adaptability does not necessitate learning. Many species are genetically equipped 

with elaborate "knowledge" and abilities, from the very specific, such as the ability 

to record and utilize celestial maps (Waterman 1989), to the very general, such as 

plasticity in learning motor control (McFarland 1987) and language (Pinker 1994). 

But genetic code is finite. In fact, primate and human cortical neural topology is 

too complicated to fully specify in the available genome, and is instead established by 
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Problem        Learning in complex situated domains. 

Assertion      Traditional reinforcement learning 

must be reformulated. 

Approach     Replace states, actions and reinforcement 

with conditions, behaviors, heterogeneous reward functions 

and progress estimators. 

Validation    Implement learning on a group of mobile robots 

learning to forage. 

Table 6.1:   A summary of the situated learning problem addressed here, and the 
structure of the proposed solution. 

spontaneous synaptic firing in utero and in the first decade of life (Vander et al. 1980). 

In addition to compensating for genetic parsimony, learning is useful for optimizing 

the agent's existing abilities, and necessary for coping with complex and changeable 

worlds. It is often argued that societies exist largely for conservation and propagation 

of behavior strategies too complex to be passed on genetically. 

The answer to the built-in versus learned tradeoff varies across species and envi- 

ronments. The work described here addresses this fundamental tradeoff in the domain 

of situated multi-agent systems. 

The rest of the thesis will address the following problem: how can a collection of 

situated agents learn in a group environment? This problem will be addressed in a 

nondeterministic, noisy and error-prone domain with stochastic dynamics, in which 

the agent does not have an a priori model of the world. 

We propose a formulation of reinforcement learning that uses a level of description 

that makes the state space manageable, thus making learning possible. Furthermore, 

we present two methods for shaping reinforcement to take advantage of information 

readily available to the agent, and to make learning more efficient. These ideas 

are validated by demonstrating an effective learning algorithm on a group of robots 

learning to forage. Table 6.1 summarizes the problem and the approach. 
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6.2    Relevant Learning Models 

There axe many things an agent can learn, but not many ways in which it can learn 

it. According to what is being learned, existing approaches can be classified into the 

following categories: 

• learning declarative knowledge 

• learning control 

• learning new behaviors 

• learning to select behaviors/actions 

6.2.1 Learning Declarative Knowledge 

Learning declarative knowledge is one of the founding areas of AI but also one that is 

least directly related to the work in this thesis. The only type of declarative knowledge 

that situated agents have had to deal with to date are maps of the environment. 

Much of the robotics literature deals with the problem of constructing and updating 

such maps in variety of situated domains (see Mataric (1990a) for a review of the 

literature). Maps and world models are closely tied to action in the world, which 

is why they are the primary type of declarative knowledge so far used in situated 

agents1. In contrast, this thesis focuses on procedural knowledge that is directly tied 

to acting and interacting in the world. The remaining learning categories are directly 

tied to action2. 

6.2.2 Learning Control 

Learning control is a growing field based on adaptive control, a branch of control 

theory. Problems in adaptive control deal with learning the forward or inverse model 

of the system, i.e., the plant. Forward models provide predictions about the output 

expected after performing an action in a given state. Analogously, inverse models 

provide an action, given the current state and a desired output (Jordan k Rumel- 

hart 1992). Learning control has been applied to a variety of domains and has used 

a number of different learning methodologies. Connectionist algorithms are most 

popular, (see Miller, Sutton & Werbos (1990) for a representative collection), but 

iNote: not all maps are explicit and declarative. See Mataric (1990a) for examples. 
2Author's bias: declarative learning can be further divided into as many interesting categories, 

but is not the area pursued here. 
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other approaches have also been studied (e.g., Atkeson, Aboaf, Mclntyre k Reinkens- 

meyer (1988), Atkeson (1990), Schaal k Atkeson (1994)). Adaptive control problems 

typically deal with learning complex dynamical systems with non-linearly coupled 

degrees of freedom usually involved in moving multi-jointed manipulators, objects, 

and physical bodies. 

6.2.3     Learning New Behaviors 

Learning new behaviors deals with the problem of acquiring strategies for achieving 

particular goals. Because the notion of behavior is not well defined, neither is the 

behavior learning problem. 

We defined behavior to be a control law with a particular goal, such as wall- 

following or collision avoidance. The definition is general and meant to refer to a 

level of description above basic control without specifying what that level is, since 

it varies with the domain. Furthermore, the concept of behavior contains informal 

notions about generality and adaptivity that are difficult to state precisely without 

domain-specific grounding. 

Consequently, most learning control problems appear to be instances of behavior 

learning, such as learning to balance a pole (Barto, Sutton k Anderson 1983), to play 

billiards (Moore 1992), and to juggle (Schaal k Atkeson 1994). Furthermore, work on 

action selection, deciding what action to make in each state, can be viewed as learning 

a higher-level behavior as an abstraction on the state-action space. For example, a 

maze-learning system can be said to learn a specific maze-solving behavior. 

Genetic learning has also addressed learning behaviors in simulated worlds (Koza 

1990). Since learning behaviors requires finding appropriate parameter settings for 

control, it can be cast as an optimization problem, for which genetic algorithms are 

particularly well suited (Goldberg 1989). However, since genetic algorithms operate 

on an abstract encoding of the learning problem, the encoding requires a good model 

of the agent and the environment in order to generate useful behaviors. Since the 

problem of modeling situated worlds is notoriously difficult, only a few genetic al- 

gorithms have produced behaviors that successfully transferred to physical systems 

(Steels 19946, Cliff, Husbands k Harvey 1993, Gallagher k Beer 1993). 

However, none of the above learning approaches can be said to learn new behaviors 

according to the precise definition of the problem. The posed "behavior learning 

problem" (Brooks k Mataric 1993) requires that the agent acquire a new behavior 

using its own perceptual and effector systems, as well as to assign some semantic label 

to the behavior, in order to later recognize and use it as a coherent and independent 

unit. Behavior learning appears to require bridging the elusive signal-to-symbol gap, 
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even for the most limited notion of "symbol." 

Given this definition, no existing work performs behavior learning. Learning con- 

trol and learning action selection are not strictly instances of behavior learning be- 

cause in both cases, by definition, only a single behavior is learned and no further 

abstraction is performed. Similarly, genetic algorithms do not address the stated 

behavior learning problem either, because in their domain the semantics are also 

provided by the designer. 

The signal-to-symbol problem is one of the hallmark challenges in AI. Because it 

bridges a gap between two already estranged communities, it has not received much 

attention. Another challenge of the problem is setting it up to avoid biasing the 

learner inappropriately, but still be able to evaluate its performance. It is unlikely 

that "behaviors", "concepts", and "symbolic representations" that are automatically 

generated by a situated agent will map neatly from the agent's sensorium into the 

human observer's semantic space. Nonetheless, the situated domain is particularly 

well suited for this type of work as it allows for grounding the agents' learning in 

physical behavior that is observable and thus can be evaluated externally from its 

mechanism and representation. 

6.2.4     Learning to Select Behaviors 

If learning new behaviors is learning how to do something, then learning to select 

behaviors is learning when to do it. Behavior selection has not been extensively 

studied so far, largely due to the lack of formalization of "behavior" as a building 

block for control. The work that has been clone on the topic has used reinforcement 

learning techniques (e.g., Maes & Brooks (1990) and Maes (1991)). Learning behavior 

selection is by definition a reinforcement learning problem as it is based on correlating 

the behaviors the agent performs and the feedback it receives as a result. 

6.3    Reinforcement Learning 

Reinforcement learning (RL) is a class of learning methodologies in which the agent 

learns based on external feedback received from the environment. The feedback is 

interpreted as positive or negative scalar reinforcement. The goal of the learning 

system is to maximize positive reinforcement (reward) and/or minimize negative re- 

inforcement (punishment) over time. Traditionally, the learner is given no explicit 

built-in knowledge about the task. If the learner receives no direct instruction or 

answers from the environment the learning is considered unsupervised (Barto 1990). 

The learner produces a mapping of states to actions called a policy. 
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Reinforcement learning originated in Ivan Pavlov's classical conditioning experi- 

ments (Gleitman 1981). Embraced by behaviorism, stimulus-response learning be- 

came the predominant methodology for studying animal behavior in psychology and 

biology. Ethology, the study of animals in their natural habitats, developed in re- 

sponse to the tightly controlled laboratory experimental conditions commonly used by 

behaviorists. In the mean time, RL was adopted and adapted by the computational 

community, and applied to various machine learning problems. 

Maze-learning was formulated as a reinforcement learning problem based on re- 

ward and punishment in the first well known application of RL (Minsky 1954). Soon 

thereafter, the problem of learning a scoring functions for playing checkers was suc- 

cessfully addressed with an RL algorithm (Samuel 1959). Subsequently, RL was 

applied to a variety of domains and problems, most notably in the Bucket Brigade 

algorithm used in Classifier Systems (Holland 1985), and in a class of learning meth- 

ods based on Temporal Differencing (Sutton 1988). Reinforcement learning has been 

implemented with a variety of algorithms ranging from table-lookup to neural net- 

works, and on a broad spectrum of applications, including tuning parameters and 

playing backgammon. 

Our work is concerned with reinforcement learning on situated, embodied agents. 

In particular, it is focused on issues that arise when traditional models of RL, and 

algorithms applied to those models, are used in the complex multi-agent domain we 

are working with. To address these issues, we begin by describing the most commonly, 

but not exclusively, used RL model. 

6.3.1     Markov Decision Process Models 

Most computational models of reinforcement learning are based on the assumption 

that the agent-environment interaction can be modeled as a Markov Decision Process 

(MDP), as defined below: 

1. The agent and the environment can be modeled as synchronized finite state 

automata. 

2. The agent and the environment interact in discrete time intervals. 

3. The agent can sense the state of the environment and use it to make actions. 

4. After the agent acts, the environment makes a transition to a new state. 

5. The agent receives a reward after performing an action. 
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While many interesting learning domains can be modeled as MDPs, situated 

agents learning in nondeterministic, uncertain environments do not fit this model. 

The next section describes the reasons why, by addressing each of the model assump- 

tions in turn. 

6.3.2     State 

Most RL models are based on the assumption that the agent and the environment 

are always in a clearly-defined state that the agent can sense. In situated domains, 

however, the world is not readily prelabeled into appropriate states, and the world 

state is not readily and consistently accessible to the agent. Instead, the world is 

continuous and partially observable. 

Continuity 

The state of a situated agent consists of a collection of properties, some of which are 

discrete, such as the inputs from binary sensors, others continuous, like the velocities 

of wheels. Even for the simplest of agents, a monolithic descriptor of all state prop- 

erties is prohibitively large. It scales poorly with increased sensory capabilities and 

agent complexity in general, and results in a combinatorial explosion in standard RL. 

Most models to date have bypassed continuous state by presuming higher-level 

sensory operators such as "I see a chair in front of me." But such operators have 

been shown to be unrealistic and largely unimplementable in systems using physical 

sensors (Agre k Chapman 1990, Brooks k Mataric 1993). In general, the problem of 

partitioning continuous state into discrete states is hard (Kosecka 1992), and even if 

a reasonable partitioning of the world is found, there may be no mapping from the 

space of sensor readings to this partitioning. 

Observability 

Although continuous and often complex, sensors have limited abilities. Instead of 

providing descriptions of the world, they return simple properties such as presence of 

and distance to objects within a fixed sensing region. Consequently, they cannot dis- 

tinguish between all potentially relevant world states. The collapse of multiple states 

into one results in partial observability, i.e. in perceptual aliasing, a many-to-one 

mapping between world and internal states. The inability to distinguish different 

states makes it difficult and often impossible for the learning algorithm to assign ap- 

propriate utility to actions associated with such states (Whitehead k Ballard 1990). 

Partially Observable Markov Decision Processes (POMDPs) have been developed 
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by the operation research community for dealing with this problem. Partial observ- 

ability is added into a Markov model by introducing a discrete probability distribution 

over a set of possible observations for a given state. POMDPs have been studied and 

successfully applied to theoretical learners (Cassandra, Kaelbling & Littman 1994), 

but have not yet been used empirically largely due to the fact that observability 

models of situated systems are not generally available. 

Generalization 

Any learner is caught in a paradox: it must disambiguate the relevant inputs, but it 

also must discard all irrelevant inputs in order to minimize its search space. However 

it may be structured, the learner's space in traditional RL is exponential in the size 

of the input, and thus marred by the curse of dimensionality (Bellman 1957). Some 

form of input generalization, or collapsing of states into functional equivalence 

classes, is necessary for almost all problems. 

Human programmers perform generalization implicitly whenever they use clever 

orderings of rules, careful arbitration, and default conditions, in crafting control 

strategies. They minimize ambiguity and maximize parsimony by taking advantage 

of their domain knowledge. 

In RL, in the absence of domain knowledge, state generalization has been ad- 

dressed with statistical clustering methods using recursive partitioning of the state 

space based on individual bit relevance (Chapman & Kaelbling 1991, Mahadevan & 

Connell 1991a, Moore 1991, Moore 1993). It is also confronted in Classifier Systems 

that use binary strings as state descriptors (Holland 1986). The state can contain 

wild cards (#'s) that allow for clustering states, with the flexible grouping potential of 

full generality (all #'s) to full specificity (no-#'s). Generalization results in so-called 

"default hierarchies" based on the relevance of individual bits changed from #'s to 

specific values. This process is analogous to statistical RL methods (Mataric 1991). 

The input generalization problem is also addressed by the connectionist RL lit- 

erature. Multi-layer networks have been trained on a variety of learning problems 

in which the hidden layers constructed a generalized intermediate representation of 

the inputs (Hinton 1990). While all of the RL generalization techniques are non- 

semantic, the table-based methods and Classifier System approaches are somewhat 

more readable as their results are a direct consequence of explicit hand-coded criteria. 

Connectionist approaches, in contrast, utilize potentially complex network dynamics 

and produce effective but largely inscrutable generalizations. 

All of the described generalization techniques are effective but require large num- 

bers of trials to obtain sufficient statistical information for clustering states. As such, 

they are an incremental improvement of the overwhelmingly slow exponential learning 
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algorithms. Our work will explore a different alternative, one that takes principled 

advantage of domain knowledge instead of purely statistical generalization. 

Paradoxically, the unwieldy fully-exponential3 state-action search space used by 

standard RL models gives them one of their main positive properties: asymptotic 

completeness. While hand coded reactive policies take advantage of the cleverness 

of the designer, they are rarely provably complete. Most irrelevant input states are 

easily eliminated, but potentially useful ones can be overlooked. On the other hand, 

complete state spaces guarantee that, given sufficient time and sufficiently rich re- 

inforcement, the agent will produce a provably complete policy. Unfortunately, this 

quality is of little use in time-bounded situated domains. 

6.3.3     State Transitions 

Simple MDP-based models employ discrete, synchronized state transitions. In con- 

trast, in situated domains the world state and the agent state change asynchronously 

in response to various events. In dynamic domains, only a subset of those events are 

directly caused by the agent's actions or are in agent's control. In general, events 

can take different amounts of time to execute, can have delayed effects, and can 

have different consequences under identical conditions. In short, situated domains 

are difficult to model properly. 
Deterministic models do not capture the dynamics of most situated domains, 

so nondeterministic alternatives have been considered (Lin 1991). Unfortunately, 

most are based on unrealistic models of sensor and effector uncertainty with overly 

simplified error properties. They are typically based on adding Gaussian noise to each 

sensed state and each commanded action. However, uncertainty in situated domains 

does not follow Gaussian distributions but instead results from structured dynamics 

of interaction of the system and the environment. These dynamics play an important 

role in the overall behavior of the system, but are generally at a description level too 

low to be accurately modeled or simulated. 

As an example, consider the properties of realistic proximity and distance sen- 

sors. The accuracy of ultrasound sensors is largely dependent on the incident angle 

of the sonar beam and the surface, as well as on the surface materials, both of which 

are difficult and tedious to model accurately. Infra-red and vision sensors also have 

similarly detailed yet entirely different properties, none of which are accurately rep- 

resented with simple models. Simple noise models are tempting, but they produce 

artificial dynamics that, while potentially complex, do not model the true complexity 

3In the number of state bits. 
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of realistic physical systems. Consequently, many elegant results of simple simulations 

have not been successfully repeated on more complex agents and environments. 

Given the challenges of realistic modeling, it is generally very difficult to obtain 

transition probabilities for nondeterministic models of situated domains. Models for 

such domains are not readily available, and must be obtained empirically for each 

system by a process analogous to learning a world model. It is difficult to estimate 

if obtaining a world model for a given domain requires any more or less time than 

learning a policy for some set of goals. Consequently, insightful work on learning 

world models for more intelligent exploration (Sutton 1990, Kaelbling 1990) is yet to 

be made applicable to complex situated domains. 

We have argued that accurate models of situated domains are difficult to obtain 

or learn. Instead, we will focus in this work on learning policies in systems without 

explicit world models. The next section describes the general form of RL algorithms 

that have been used for such policy learning. 

6.3.4    Algorithms 

Reinforcement learning algorithms have the following general form (Kaelbling 1990): 

1. Initialize the learner's internal state / to I0. 

2. Do Forever: 

a. Observe the current world state s. 

b. Choose an action a = F(I,s) 

using the evaluation function F. 

c. Execute action a. 

d. Let r be the immediate reward for 

executing a in world state s. 

e. Update the internal state I = U(I, s, a, r) 

using the update function U. 

The internal state / encodes the information the learning algorithm saves about 

the world, usually in the form of a table maintaining state and action data. The 

update function U adjusts the current state based on the received reinforcement, and 

maps the current internal state, input, action, and reinforcement into a new internal 

state. The evaluation function F maps an internal state and an input into an action 

based on the information stored in the internal state. Different RL algorithms vary 

in their definitions of U and F. 
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The predominant methodology used in RL is based on a class of temporal differ- 

encing (TD) techniques (Sutton 1988). All TD methods deal with assigning credit or 

blame to past actions by attempting to predict long-term consequences of each action 

in each state. Sutton's original formalization of temporal differencing (TD(A)) deals 

with such predictions in Markovian environments, and covers a large class of learning 

approaches. For example, Bucket Brigade, the delayed reinforcement learning method 

used in Classifier Systems, is an instance of TD (Mataric 1991). Q-learning (Watkins 

1989), the most commonly known and used TD algorithm, is defined and explained 

in Appendix A, as background for subsequent comparison. 

6.3.5     Learning Trials 

Performance properties of various forms of TD applied to Markovian environments 

have been extensively studied (Watkins k Dayan 1992, Barto, Bradtke k Singh 1993, 

Jaakkola k Jordan 1993). Provable convergence of TD and related learning strategies 

based on dynamic programming is asymptotic and requires infinite trials (Watkins 

1989). Generating a complete policy, however incorrect, requires time exponential in 

the size of the state space, and the optimality of that policy converges in the limit 

as the number of trials approaches infinity. In practice, this translates into hundreds 

of thousands of trials for up to ten-bit states. Thus, even in ideal Markovian worlds 

the number of trials required for learning is prohibitive for all but the smallest state 

spaces. 
The situated learning problem is even more difficult, however. Assuming an appro- 

priately minimized state space, a learner may still fail to converge, due to insufficient 

reinforcement. 

6.3.6     Reinforcement 

Temporal credit assignment, assigning delayed reward or punishment, is considered 

to be one of the most difficult and important problems in reinforcement learning4. 

Temporal credit is assigned by propagating the reward back to the appropriate pre- 

vious state-action pairs. Temporal differencing methods are based on predicting the 

expected value of future rewards for a given state-action pair, and assigning credit 

locally based on the difference between successive predictions (Sutton 1988). 

Reward functions determine how credit is assigned. The design of these functions 

is not often discussed, although it is perhaps the most difficult aspect of setting up 

4The first statement of the problem is due to Samuel (1959), whose checkers-learning program 
learned to reward moves that eventually lead to "a triple jump." 
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a reinforcement learning algorithm. The more delayed the reward, the more trials 

the learning algorithm requires, the longer it takes to converge. Algorithms using 

immediate reinforcement naturally learn the fastest. 

Most reinforcement learning work to date has used one of the following two types 

of reward: immediate or very delayed. We postulate, however, that situated domains 

tend to fall in between the two popular extremes, providing some immediate rewards, 

plenty of intermittent ones, and a few very delayed ones. Although delayed reinforce- 

ment, and particularly impulse reinforcement that is delivered only at the single goal, 

eliminates the possibility for biasing the learning, it usually makes it prohibitively 

difficult. Most situated learning problems do not resemble mazes in which the reward 

is only found at the end. Instead, some estimates of progress are available along 

the way. These estimate can be intermittent, internally biased, inconsistent, and 

occasionally incorrect, but if used appropriately, can significantly speed up learning. 

The approach presented in the next chapter takes advantage of such intermediate 

estimates to shape reinforcement and accelerate learning. 

6.3.7    Multiple Goals 

We have argued that impulse reinforcement related to a single goal makes learning 

prohibitively slow. Furthermore, single goal agents are rare in situated domains. 

Instead, situated agents are best viewed as having multiple goals, some of which are 

maintained concurrently, while others are achieved sequentially. For example, in our 

previously described foraging task, an agent maintains a continuous low-level goal 

of collision avoidance, also keeps a minimal distance from other agent in order to 

minimize interference, may attempt to remain in a flock, and may be heading home 

with a puck. 

Most RL models require that the learning problem be phrased as a search for a 

single goal optimal policy, so that it can be specified with a global reward function. 

Not surprisingly, if the world or the goal changes, a new policy must be learned, using 

a new reward function. The existing policy will conflict with the new learning and 

will need to be "forgotten." 

In order to enable learning of a multi-goal policy, the goals must be formulated 

as subgoals of a higher-level single optimal policy. Therefore they must be sequential 

and consistent. To enforce a specific goal sequence, the state space must explicitly 

encode what goals have been reached at any point in time, thus requiring added 

bits in the input state vector (Singh 1991). Although a natural extension of the RL 

framework, this method requires the state space to grow with each added goal, and 

cannot address concurrent goals. Sequences of goals fail to capture the dynamics of 
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complex situated worlds and agents that may have one or more high-level goals of 

achievement, and also a number of maintenance goals, the interaction of which has 

important effects on the agents' behavior and rate of learning. 

A more general solution to multiple goals within the traditional framework is to use 

separate state spaces and reinforcement functions for each of the goals and merge them 

Whitehead, Karlsson k Tenenberg (1993). However, merging policies assumes that 

the necessary information for utility evaluation is available to the agent. However, 

as previously discussed in relation to game-theoretic approaches (see Section 2.4.7), 

that assumption may not hold in many situated domains. 

6.3.8     Related Work 

Work in computational RL has been active since the fifties and has become particu- 

larly lively in the last decade. The majority of the contributions have been theoretical 

in nature. For thorough reviews of reinforcement learning as applied to well-behaved 

learning problems see Watkins (1989) and Sutton (1988). For more recent work on im- 

proved learning algorithms for situated agents, largely applied to simulated domains, 

see Kaelbling (1990) and Whitehead (1992). This section will focus on empirical 

learning work with situated agents. 

Whitehead k Ballard (1990) and Whitehead (1992) addressed the perceptual alias- 

ing problem in situated RL. They proposed an approach to adaptive active perception 

and action that divided the control problem into two stages: a state identification 

stage and a control stage, and applied appropriate learning methods to each. The 

approach was demonstrated on a simulated block stacking task, but has not been 

tested in an embodied domain. 

Kaelbling (1990) used a simple mobile robot to validate several RL algorithms 

using immediate and delayed reinforcement applied to learning obstacle avoidance. 

Maes k Brooks (1990) applied a statistical reinforcement learning technique using 

immediate reward and punishment in order to learn behavior selection for walking on 

a six-legged robot. The approach was appropriate given the appropriately reduced 

size of the learning space and the available immediate and accurate reinforcement 

derived from a contact sensor on the belly of the robot, and a wheel for estimating 

walking progress. 

More delayed reinforcement was used by Mahadevan k Connell (1991a) in a box- 

pushing task implemented on a mobile robot, in which subgoals were introduced to 

provide more immediate reward. Mahadevan k Connell (19916) experimented with 

Q-learning using monolithic and partitioned goal functions for learning box-pushing, 

and found subgoals necessary. 
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Chapman k Kaelbling (1991) and Mahadevan & Connell (1991a) demonstrated 

complementary approaches for generalization. Chapman & Kaelbling (1991) started 

with a single most general state and iteratively split it based on statistics accumulated 

over time. Splitting is based on the relevance of each state bit; when one is found to 

be relevant, the state space is split in two, one with that bit on, and the other with 

it off. In contrast, Mahadevan & Connell (1991a) started with a fully differentiated 

specific set of states, and consolidated them based on similarity statistics accumulated 

over time. 

Aside from traditional unsupervised reinforcement learning methods described 

above, other techniques have also been explored. Pomerleau (1992) used a supervised 

connectionist learning approach to train steering control in an autonomous vehicle 

based on generalizing visual snapshots of the road ahead. 

Thrun h Mitchell (1993) demonstrated a connectionist approach to learning visual 

features with a camera mounted on a mobile robot. The features are not assigned by 

the designer but are instead selected by the network's intermediate representations. 

Not surprisingly, the result is not semantically meaningful to a human observer, but 

is nonetheless well suited for the robot's navigation task. 

The work presented here is, to the best of the author's knowledge, the first at- 

tempt at applying reinforcement learning to a collection of physical robots learning 

a complex task consisting of multiple goals. Parker (1994) implemented a non-RL 

memory-based style of parameter-learning for adjusting activation thresholds used 

to perform task allocation in a multi-robot system. Tan (1993) has applied tradi- 

tional RL to a simulated multi-agent domain. Due to the simplicity of the simulated 

environment, the work has relied on an MDP model that was not applicable to this 

domain. Furthermore, Tan (1993) and other simulation work that uses communi- 

cation between agents relies on the assumption that agents can correctly exchange 

learned information. This often does not hold true on physical systems whose noise 

and uncertainty properties extend to the communication channels. 

6.4    Summary 

This chapter has overviewed the key properties of reinforcement learning strategies 

based on Markov Decision Process models, and their implications on learning in situ- 

ated domains. Learning algorithms based on dynamic programming and traditionally 

applied to such Markovian domains were also discussed. Finally, related robot learn- 

ing and reinforcement learning work was reviewed. 

Two main problems arise when the standard MDP formulation is applied to our 

multi-agent domain:   1) the state space is prohibitively large, and 2) delayed rein- 
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forcement is insufficient for learning the foraging task. The next chapter introduces a 

method of reformulating the learning problem in order to make learning both possible 

and efficient in the complex domain used in this work. 
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Chapter 7 

The Learning Approach 

This chapter describes a formulation of the proposed reinforcement learning problem 

in order to make learning possible and efficient in the complex situated domain at 

hand, as well as in situated domains in general. 

In order to deal with the complexity and uncertainty of situated domains, a learn- 

ing algorithm must use an appropriate level of description. A learner using too low 

a level of description will result in a state space so large as to make the learning 

prohibitively slow. In contrast, a learner based on too corse a level of description 

cannot discover any novel and potentially useful strategies outside the structured 

space allowed by the coarse representation. 

An appropriate representation shapes the state space into an expressive but tractable 

learning space. An effective learning algorithm, then, searches this learning space ef- 

ficiently. Thus, given the complexities of situated agents and environments, as well as 

those of reinforcement learning algorithms, any approach to situated learning should 

have the following properties. 

A model for situated learning should: 

1. minimize the learner's state space 

2. maximize learning at each trial 

This chapter will address each of the desired properties in turn. First, an approach 

will be described for minimizing the state space in order to make the learning problem 

tractable. Second, an approach for shaping reinforcement will be proposed that makes 

learning more efficient. In both cases, the traditional primitives of reinforcement 

learning (states, actions, and reinforcement) will be reformulated (—>) into subtly 
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different but pragmatically more effective counterparts, as follows: 

1. states & actions —> conditions k behaviors 

2. reinforcement —> multi-modal feedback 

7.1     Reformulating the Problem 

Traditional state-action models used by many RL approaches tend to be based on a 

level of description inappropriate for complex situated domains. Their representations 

abstract away important control details, but still must search excessively large state 

spaces representing the agent's entire world. A large state space is not so much a sign 

of a difficult problem as it is of a poorly formulated one. We propose the following 

reformulation that uses a more appropriate representation for the problem of learning 

in noisy and inconsistent worlds: 

Reinforcement learning in situated domains can be formulated as learning 

the conditions necessary and sufficient for activating each of the behav- 

iors in the repertoire such that the agent's behavior over time maximizes 

received reward. 

This formulation accomplishes the desired goal of diminishing the learning space 

by using conditions and behaviors instead of states and actions, with the effect of 

elevating the level of description of the learning problem. 

7.1.1     Behaviors 

The first part of the thesis has argued that behaviors are an intuitive and effective level 

of description for control, and described a methodology for selecting and combining 

basic behaviors for a given domain and set of goals. Behaviors were defined as goal- 

driven control laws that hide the details of control. The same reasons that made 

behaviors a useful abstraction in control make them an appropriate and efficient 

basis for learning. 

Behaviors are more general than actions because they are not tied to specific 

detailed states but instead triggered by a set of general conditions. For instance, a 

wall-following behavior applies to any environment and any wall that the agent can 

sense, and is not dependent on the agent's exact state including such information as 

its (x, y) position, whether it is carrying a puck, and what is in front or behind it. 

It can be said that much of the RL literature already uses behaviors without 

labeling them as such.    For example, an action called "left" which transports an 
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agent to the next square on a grid and turns it by 90 degrees, requires a complex 

control sequence. It is a control law that guarantees an output, such as the agent's 

position and orientation, and is thus identical in effect to our definition of behavior. 

Such a behavior, however, may not -be realistic in continuous, noisy domains. In 

general, atomic actions of simulated grid worlds can translate into arbitrarily complex 

behaviors on embodied systems. Consequently, situated, embodied agents often use 

a very different set of behavior primitives, specifically designed for the particular 

dynamics of the agent and its interaction with the world. 

Behaviors elevate control to a higher and more realizable level. However, the 

complexity of reinforcement learning lies in the size of the learning space, which is 

traditionally exponential in the state space of the agent. In order to significantly 

accelerate learning, we must minimize this space as well. We propose to do so by 

abstracting the learning space to a higher level, structured by the granularity of the 

conditions necessary for executing each of the behaviors. 

Using behaviors abstracts away the details of the low-level controller, while still 

using realizable units of control, and thus guaranteeing the results, or postconditions, 

of each behavior. Similarly, conditions abstract away the low-level details of the 

agent's state space, and define the learning space at a higher level, by state clustering. 

7.1.2     Conditions 

Conditions are predicates on sensor readings that map into a proper subset of the 

state space. Each condition is defined as the part of the state that is necessary 

and sufficient for activating a particular behavior. For instance, the necessary and 

sufficient conditions for picking up a puck are that a puck is between the fingers of 

the robot. 

The space of conditions is usually much smaller than the complete state space of 

the agent, resulting in a smaller space for the learning algorithm. Furthermore, the 

fewer state elements need to be sensed the less the system will suffer from error and 

uncertainty. Finally, the only events relevant to the agent are those that change the 

truth value of the predicates, i.e. the current condition. Those events are used to 

trigger and terminate behaviors. 

Reformulating states and actions into conditions and behaviors effectively reduces 

the state space to a manageable size, thus making learning possible in a complex do- 

main. The next step is to make learning efficient, by using appropriate reinforcement. 
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7.2    Reinforcement for Accelerated Learning 

The amount and quality of the reinforcement determines how quickly the agent will 

learn. In nondeterministic uncertain worlds, learning in bounded time requires shap- 

ing of the reinforcement in order to take advantage of as much information as is 

available to the agent. 

In general, reinforcement learning can be accelerated in two ways: 1) by building- 

in more information, and 2) by providing more reinforcement. The reward function 

implicitly encodes domain knowledge and thus biases what the agent can learn. Sim- 

plifying and minimizing reinforcement, as practiced by some early RL algorithms 

(Sutton 1990), does diminish this bias, but it also greatly handicaps, and in situated 

domains, completely debilitates the learner. 

Domain knowledge can be embedded through a reward-rich and complex rein- 

forcement function. This approach is effective, but the process of embedding seman- 

tics about the world into the reward function is usually ad hoc. In the ideal case, 

reinforcement is both immediate and meaningful. Immediate error signals that pro- 

vide not only the sign but also the magnitude of the error result in fastest learning. 

As in supervised learning, then provide the agent with the correct answer after each 

trial. In learning control (Jordan & Rumelhart 1992, Atkeson 1990, Schaal & Atke- 

son 1994), such error signals are critical as the learning problem is usually finding a 

complex mapping between a collection of input parameters and the desired output. 

Immediate reinforcement in RL is typically a weak version of an error signal, reduced 

to only the sign of the error but not the magnitude or the direction. 

We propose an intermediate solution based on shaping as a version of an error 

signal based on principled embedding of domain knowledge. 

7.2.1     Heterogeneous Reward Functions 

Monolithic reward functions with a single high-level goal, when applied to situated 

domains, require a large amount of intermediate reinforcement in order to aid the 

agent in learning. Intuitively, the more subgoals are used the more frequently rein- 

forcement can be applied, and the faster the learner will converge. We have already 

argued that situated agents maintain multiple concurrent goals, and that such goals 

can be achieved and maintained by using behaviors as the basic unit of control and 

learning. Thus, a task in a situated domain can be represented with a collection 

of such concurrent goal-achieving behaviors. Reaching each of the goals generates 

an event1 that provides primary reinforcement to the learner.   The following is the 

XA change in the conditions. 

124 



general form of such event-driven reinforcement functions: 

Re(c,t) = < 
r   if the event E occurs 

0   otherwise 
e^O 

Event-driven reinforcement for any event E is a function of conditions c and time 

t. The received reinforcement r may be positive or negative. 

If necessary information about the task and the appropriate sensors are avail- 

able, each of the goals can be further broken down into one or more subgoals, with 

associated secondary reinforcement. In general, the specification of a high-level be- 

havior provides a collection of subgoals that need to be achieved and maintained. If 

the achievement of a subgoal can be detected, it can be directly translated into a 

reinforcement function. 

A general heterogeneous reward function has the following form: 

Re(c,t) = < 

TE\    if event El occurs 

fE2    if event E2 occurs 

Vßn   if event En occurs 

0       otherwise 

The complete reward function is a sum of inputs from the individual event-driven 

functions. Thus, if multiple events occur simultaneously, appropriate reinforcement 

for all of them is received from multiple sources. 

Even-driven reinforcement functions are illustrated with the following example: 

• A robot receives reward Ra whenever it avoids an obstacle, and reward 

Rh whenever it reaches home. 

• The corresponding reward function appears as follows: 

R(c,t) 

ra    if an obstacle is avoided 

rh    if home is reached 

0     otherwise 

• If the robot happens to be avoiding an obstacle and reaches home at the 
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same time, it receives reinforcement from both sources concurrently: 

R(c,t) = ra + rh 

As the above example illustrates, each of the heterogeneous reward functions 

provides a part of the structure of the learning task, and thus speeds up the learning. 

Event-driven reward functions associate reinforcement with the achievement of 

goals and subgoals through the application of associated behaviors. They deliver 

reward or punishment in response to events, i.e. between behaviors. The next section 

describes a shaping mechanism for providing reinforcement during the execution of a 

behavior. 

7.2.2     Progress Estimators 

Many goals have immediately available measures of progress, since few tasks need to 

be defined as long sequences of behaviors without any feedback. Progress estimators 

use domain knowledge to measure progress during a behavior and, if necessary, to 

trigger principled behavior termination. 

Feedback as a learning signal can be received from a one or more goals. Consider 

the following example: 

• The robot's task is to learn to take pucks home. 

• Having found a puck, the robot can wait until it accidentally finds home 

and then receives a reward. 

• Alternatively, it can use a related subgoal, such as getting away from the 

food/puck pile, for feedback. 

• In such a scheme, the longer the robot with a puck stays near food, the 

more negative reinforcement it receives. 

• This strategy will encourage the behaviors that take the robot away from 

the food, one of which is homing. 

While immediate reinforcement is not available in many domains, intermittent 

reinforcement can be provided by estimating the agent's progress relative to its cur- 

rent goal and weighting the reward accordingly. Measures of progress relative to a 

particular goal can be estimated with standard sensors, and furthermore feedback is 

available from different sensory modalities. 

The following are the two general forms of progress estimator functions. 
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Rp{c,t) = < 
m   if c € C" A progress is made 

m > 0,    n < 0,    C" C C 

R,(c,t) = 

n    if c £ C" A no progress 

z    if c £ C A progress is made 

j   if c G C" A regress is made     «' > 0,    j < 0,    C'cC 

0   otherwise 

C is the set of all conditions, and C is the set of conditions associated with the 

given progress estimator, i.e. those conditions for which the given progress estimator 

is active. 

Rp and Rs have different dynamics. Rp is a two-valued function that monitors 

only the presence and absence of progress. Rs is a three-valued function that monitors 

the presence and absence of progress, as well as negative progress or regress. 

Progress estimators diminish brittleness of the learning algorithm in the following 

ways: 

• decrease sensitivity to noise 

• encourage exploration in the behavior space 

• decrease fortuitous rewards 

Each is described in turn. 

Decreasing Sensitivity to Noise 

Progress estimators provide implicit domain knowledge to the learner. They strengthen 

appropriate condition-behavior correlations and serve as filters for spurious noise. 

Noise-induced events are not consistently supported by progress estimator credit, 

and thus have less impact on the learner. Consider the following example: 

• Agent A is executing behavior B in condition c and receives positive 

reinforcement rp by the progress estimator Rp. 

• A receives negative reinforcement re from Re as a result of an event in- 

duced by a sensor error. 

• The impact of the negative reinforcement is diminished by the continuous 

reinforcement received from Re throughout the execution of B. 
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The domain knowledge behind progress estimators provides a continuous source 

of reinforcement to counter intermittent and potentially incorrect credit. 

Encouraging Exploration 

Exploration versus exploitation is one of the critical tradeoffs in machine learning. 

The agent must do enough exploration to discover new and potentially more efficient 

condition-behavior combinations, but must also optimize its performance by using 

the best known pairings. Ineffective exploration results in thrashing, repeatedly at- 

tempting of one or more inappropriate behaviors. 

Since situated environments are event-driven, any given behavior may persist for a 

potentially long period of time. An agent has no impetus for terminating a behavior 

and attempting alternatives, since any behavior may eventually produce a reward. 

The learning algorithm must use some principled strategy for terminating behaviors in 

order to explore the condition-behavior space effectively. Progress estimators provide 

such a method: if a behavior fails to make progress relative to the current goal, it is 

terminated and another one is tried. By using domain knowledge to judge progress, 

progress estimators induce exploration by terminating behaviors according to common 

sense, rather than according to an arbitrary internal clock or some ad hoc heuristic. 

Decreasing Fortuitous Rewards 

A fortuitous reward is one received for an inappropriate behavior that happened to 

achieve the desired goal in the particular situation, but would not have that effect in 

general. Consider the following scenario: 

• The agent has a puck and is attempting various behaviors. 

• While executing avoidance in safe-wandering, A fortuitously enters the 

home region. 

• Without a progress estimator, A will receive a reward for reaching home, 

and will thus positively associate the avoiding behavior with the goal of 

getting home. It will require repeated trials in order to discover, implicitly, 

that the correlation is based on the direction it is moving rather than on 

safe — wandering. 

• Now suppose a progress estimator H is added into the learning algorithm. 

H generates a reward when the agent decreases its distance to home. If 

it fails to do so in a given time interval, the behavior is terminated. 

• Although A can still receive fortuitous rewards, their impact will be 

smaller compared to that of the consistent progress estimator. The con- 

tinuous reward for approaching home will have a discounting effect on any 
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fortuitous rewards the agent receives. Thus, H will bias the agent toward 
behaviors that decrease the distance to home. 

In general, the only way to eliminate fortuitous rewards is to know the relevance of 

context a priori. Progress estimators achieve this effect incrementally, because behav- 

iors have some measurable duration which allows progress estimators to contribute 

reinforcement. 

7.3     Summary 

This chapter has introduced a formulation of reinforcement learning based on con- 

ditions, behaviors, and shaped reinforcement in order to: 1) make learning possible 

and 2) make learning efficient in complex situated domains. 

The described formulation is a direct extension of behavior-based control (Mataric 

1992a, Brooks 19916, Brooks 1986). The presented heterogeneous reward functions 

are related to subgoals (Mahadevan & Connell 1991a) as well as subtasks (White- 

head et al. 1993). However, unlike previous work, which has focused on learning 

action sequences, this work used a higher level of description. The proposed subgoals 

are directly tied to behaviors used as the basis of control and learning. Similarly, 

progress estimators are mapped to one or more behaviors, and expedite learning of 

the associated goals, unlike a single complete external critic used with a monolithic 

reinforcement function (Whitehead 1992). 

Elevating the description, control, and learning level of the system to one based on 

perceptual conditions and behaviors instead of perceptual states and atomic actions 

greatly diminishes the agent's learning space and makes learning tractable. The use of 

heterogeneous reward functions and progress estimators builds in domain knowledge 

and contextual information thus making learning more efficient. 

The proposed reformulation forms a better foundation for situated learning, but 

does not impose any constraints on the kind of learning algorithm that can be ap- 

plied. Indeed, it is completely general and compatible with any reinforcement learning 

approaches. 

The next chapter demonstrates how this formulation was applied to the task of 

learning foraging in a situated, multi-robot domain. 
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Chapter 8 

Learning Experiments 

This chapter describes the learning experiments conducted to test the presented ap- 

proach to setting up the learning space to enable learning, and shaping reinforcement 

to accelerate learning in situated domains. 

8.1     The Robots 

The learning experiments were performed on a group of up to four fully autonomous 

R2 mobile robots with on-board power and sensing (Figure 8-1). Each robot consists 

of a differentially steerable wheeled base and a gripper for grasping and lifting objects 

(Figure 8-2). The robots' sensory capabilities include piezo-electric bump sensors for 

detecting contact-collisions and monitoring the grasping force on the gripper, and a 

set of infra-red (IR) sensors for obstacle avoidance and grasping (Figure 8-3). 

Finally, the robots are equipped with radio transceivers, used for determining ab- 

solute position and for inter-robot communication. Position information is obtained 

by triangulating the distance computed from synchronized ultrasound pulses from two 

fixed beacons. Inter-robot communication consists of broadcasting 6-byte messages 

at the rate of 1 Hz. In the experiments described here, the radios are used to deter- 

mine the presence of other nearby robots. As in the first set of robot experiments, 

the robots are programmed in the Behavior Language (Brooks 1990a). 

8.2     The Learning Task 

The learning task consists of finding a mapping of all conditions and behaviors into 

the most effective policy for group foraging. Individually, each robot learns to select 
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Figure 8-1: Three of the four robots used in the learning experiments. These robots 
demonstrated learning to forage by selecting among a basic behavior repertoire under 
appropriate sensory conditions. 

~|l 
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Figure 8-2: Each of the learning robots consists of a differentially steerable wheeled 
base and a gripper for grasping and lifting objects. The robot's sensory capabili- 
ties include piezo-electric bump and gripper sensors, infra-red sensors for collision 
avoidance, and a radio transmitter for absolute positioning. 
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Figure 8-3: The robot's sensory capabilities include piezo-electric bump and gripper 
sensors used to detect collisions and to grasp pucks, infra-red sensors for collision 
avoidance, and a radio transmitter for absolute positioning and message passing. 

the best behavior for each condition, in order to find and take home the most pucks. 

Foraging was chosen because it is a complex and biologically inspired task, and be- 

cause our previous group behavior work, described in earlier sections and in Mataric 

(19926) and Mataric (1993), provided the basic behavior repertoire from which to 

learn behavior selection. As was described in Section 5.1.2, foraging can be achieved 

from a small basic behavior set. Such a set, given to the robots a priori, consisted of 

the following fixed behavior repertoire: 

• safe-wandering 

• dispersion 

• resting 

• homing 

Resting was introduced to expand the agents' behavior space, as well as to intro- 

duce an internal clock that can trigger internally-generated events. The internal clock 

imposed a cyclic "circadian" schedule consisting of periods of "day-time" and shorter 

periods of "night-time". Resting could be used as a part of a regular recharging cycle, 

or as a chance for the robots to aggregate and exchange information1. 

Utility behaviors for grasping and dropping objects were also included in the 

robots' capabilities, but since their conditions were not learned, they are not included 

in the above basis set nor in the learning space. 

Neither of these options were used in the shown generation of robots. 
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Given the behavior repertoire, the robots were given the task of learning the 

appropriate conditions for triggering each of the behaviors. By considering only the 

space of conditions necessary and sufficient for triggering the behavior set, the state 

space is reduced to the power set of the following clustered condition predicates: 

• have-puck? 

• at-home? 

• near-intruder? 

• night-time? 

The conditions for grasping and dropping were built-in. As soon as a robot detects 

a puck between its fingers, it grasps it. Similarly, as soon as a robot reaches the home 

region, it drops the puck if it is carrying one. Finally, whenever a robot is too near 

an obstacle, it avoids. The three reflexive behaviors were deemed to be "instinctive" 

because learning them has a high cost. Learning to avoid has a potentially prohibitive 

damaging cost for the robot, and is not a natural learning task, as it appears to be 

innate in nature, and can be easily programmed on most systems. Puck manipulation 

requires a fast and accurate response from the gripper motors, and, like the other 

basic behaviors, is best suited for parameter learning. The remaining behaviors: 

dispersion, safe-wandering, homing, and resting formed a more appropriate basis for 

learning, because they are general and executable in a variety of situations, so finding 

the appropriate subset of such situations (conditions) for their activation is both an 

interesting learning problem and a useful application for control. 

As described, the foraging task may appear quite simple, since its learning space 

has been appropriately minimized to include only the clustered conditions and the 

few basic behaviors. In theory, an agent should be able to quickly explore it and learn 

the optimal policy. In practice, however, such quick and uniform exploration is not 

possible. Even the relatively small learning space presents a challenge to an agent 

situated in a nondeterministic, noisy and uncertain world. As we will soon demon- 

strate, even in its reformulated version this problem poses a challenge for traditional 

RL methodologies using delayed reward, and thus also justifies the proposed shaped 

reinforcement strategy. 

Improved reinforcement is necessary partially because, in our domain, the learner 

is not provided with a model of the world. As discussed earlier, such a model is difficult 

to obtain. Without it, the agent is faced with implicitly deducing the structure 

of a. dynamic environment that includes other agents whose behavior occasionally 

facilitates, but largely interferes with, the individual learning process (see Figures 8-4 
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Figure 8-4: A scaled top view of the experimental area in which the learning experi- 
ments were conducted. The workspace is small enough to result in frequent interaction 
and interference between the robots. The home region is shaded. 

and 8-5). Thus, the shown scenario poses a difficult challenge for the reinforcement 

learning paradigm. The next section describes our solution. 

8.3    The Learning Algorithm 

The learning algorithm produces and maintains a total order on the appropriate- 

ness of behaviors associated with every condition, expressed as a matrix A(c, b). The 

value of any condition-behavior pair (c, b) is the sum of the reinforcement R received 

up to that point: 

The values in the matrix fluctuate over time based on received reinforcement. 

They are updated asynchronously by any received learning signal. 

The following events produce immediate positive reinforcement: 

• Ep: grasped-puck 

• Egd'. dropped-puck-at-home 

• Egw: woke-up-at-home 

"Waking-up" refers to the event of the internal clock indicating the end of night- 

time and the beginning of day-time. 
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Figure 8-5: The camera's view of the experimental environment used for learning 
The boundary of the home region is indicated with a row of pucks for the purposes 
of the photo. The pile of pucks is also marked. 

The following events result in immediate negative reinforcement: 

• Ebd: dropped-puck-away-from-home 

• Ebw: woke-up-away-from-home 

The events are combined into the following heterogeneous reinforcement function: 

p if Ep occurs 

gd if Egd occurs 

bd if Ebd occurs 

gw if Egw occurs 

bw if Ebw occurs 

0 otherwise 

RE{C) = < 

p,gd,gw>0,    bd,biu<0 

Two progress estimating functions are used: / and H. I is associated with min- 

imizing interference and is triggered whenever an agent is close to another agent. If 

the behavior being executed has the effect of increasing the physical distance to the 
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other agent, the agent receives positive reinforcement.  Conversely, lack of progress 

away from the other agent is punished, and after a fixed time period of no progress, 

the current behavior is terminated. 
Formally, / is the intruder avoidance progress function such that: 

Ri(c,t) = 
m   distance to intruder increased 

n    otherwise 

near-intruder € c,    m > 0,    n < 0 

The other progress estimator, H, is associated with homing, and is initiated when- 

ever a puck is grasped. If the distance to home is decreased while H is acüve, the agent 

receives positive reinforcement, status quo delivers no reinforcement, and movement 

away from home is punished. 
Formally, H is the homing progress function such that: 

ÄffM) 

n   nearer to home 

<   f   farther from home 

0    otherwise 

have-puck 6 c,    n > 0,    / < 0 

The simplest learning algorithm that uses the above reinforcement functions was 

implemented and tested. The algorithm simply sums the reinforcement over time: 

A(C,6) = £Ä(c,t) 
t=l 

The influence of the different types of feedback was weighted by the values of the 

feedback constants. This is equivalent to the alternative of weighting the. contnbu- 

tions to the sum, as follows: 

R(c, t) = uRE{c, t) + vRi{c, t) + wRH(c, t) 

u, v, w > 0,    (u + v + w) = l 

Binaxv-valued and real-valued RE, RH, and Rj functions were tested. Our results 

showed that different weights on the reinforcement functions did not result m faster 
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or more stable learning. This is not surprising, since the subgoals in the foraging task 

are independent and thus their learning speed is uncorrelated. 

8.4    The Control Algorithm 

The following is the complete control algorithm used for learning foraging. Behavior 

selection is induced by events, each of which is a change in the condition predicates. 

Events can be triggered: 

1. externally: e.g., a robot gets in the way of another. External events include: 

EP, Egd, and Eu- 

2. internally: e.g., the internal clock indicates night-time. Internal events in- 

clude: Egw and Ebw. 

3. by progress estimators: e.g., the interference estimator detects a lack of 

progress and terminates the current behavior. Estimator events are triggered 

by: Rj(c,t) < intruder — threshold and Rn{c^t) < homing — threshold. 

Whenever an event is detected, the following control sequence is executed: 

1. appropriate reinforcement is delivered for the current condition-behavior pair 

2. the current behavior is terminated 

3. another behavior is selected, according to the following rule: 

(a) choose an untried behavior if one is available, 

(b) otherwise choose the best behavior. 

Choosing untried behaviors first encourages exploration. Since a policy is a total 

ordering of the condition-behavior pairs, the agent must explore the entire behavior 

space before it can be said to have converged. Given the small size of the behavior 

set, this strategy has an accelerating effect on establishing an initial ordering of the 

behaviors for each condition. 

Best behavior b for a given condition c is defined to be the one with the highest 

associated A(c, b) value. Since the number of behaviors is small, this selection is easy 

to compute. Because of its use of positive and negative reinforcement, as well as the 

progress estimator induced exploration strategy, the learning algorithm does not tend 

to fall into local maxima. Consequently, we did not need to add randomness to the 

selection mechanism. 
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Figure 8-6:   Typical initial conditions for learning trials.   The robots are initiated 
either in the home region or in random positions around the workspace. 
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Figure 8-7: A typical environment state during the course of a learning experiment. 
Since they are learning independently, the robots have likely acquired different parts 
of the policy. Through interactions with objects in the world and each other they 

accumulate learning trials in order to complete their learning. 
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Figure 8-8: A typical environment state after learning. Most pucks have been col- 
lected and brought to the home region. The robots have all learned when to go get 
the pucks, and are thus competing for those remaining to be moved. 

Learning is continuous and incremental over the lifetime of the agent, thus ensuring 

that the agent remains responsive to changes in the environment (e.g., no more pucks 

are left at a particular location) and internal changes in function (e.g., dying battery 

slows motion down. 

In the described learning task, the optimal policy was derived by hand, based on 

empirical data from the foraging experiments described in Section 5.1.2, and with 

the addition of the new resting behavior. This policy is shown in Figure 8.1. The 

performance of the desired policy was tested independently and compared to alterna- 

tive solutions in order to establish its superiority relative to the imposed evaluation 

criteria. 

Snapshots of a learning experiment are shown to illustrate the progression of a 

typical of experiment. Figure 8-6 shows typical initial conditions, Figure 8-7 demon- 

strates a stage during the course of learning, and Figure 8-8 shows the environment 

toward the end of the experiment, when most of the pucks have been collected. Fig- 

ure 8-9 illustrates the resting behavior. 

The learning process consists of adjusting the values in a table with a total of 64 

entries: 24 conditions * 4 behaviors. Table 8.2 shows the table and the policy the 

agents were initialized with. The utility of all behaviors in all conditions is equal, and 

initialized to the average of the minimum and maximum A(c, b) value. 
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Figure 8-9: An example of the resting (or recharging) behavior of four robots, trig- 
gered by their internal clocks. In this case, the robots have all learned to go home 
to rest, as this photo illustrates a late stage in the learning, as demonstrated by the 

small number of remaining pucks. 

Condition Behavior 

near-intruder? have-puck? at-home? night-time? 

0 0 0 0 safe-wandering 

0 0 0 1 homing 

0 0 1 0 safe-wandering 

0 0 1 1 resting 

0 1 0 0 homing 

0 1 0 1 homing 

0 1 1 0 safe-wandering 

0 1 1 1 resting 

1 0 0 0 safe-wandering 

1 0 0 1 safe-wandering 

1 0 1 0 dispersion 

1 0 1 1 resting 

1 1 0 0 homing 

1 1 0 1 homing 

1 1 1 0 safe-wandering 

1 1 1 1 resting 

Table 8.1: The optimal foraging policy. Only the top-ranked behavior is shown for 
each condition. The full table has a total numerical ordering of four behaviors for 

each condition, a total of 64 entries. 
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Condition Behavior 
safe-wandering homing dispersion resting 

0000 50 50 50 50 
0001 50 50 50 50 
0010 50 50 50 50 
0011 50 50 50 50 
0100 50 50 50 50 
0101 50 50 50 50 
0110 50 50 50 50 
Olli 50 50 50 50 
1000 50 50 50 50 
1001 50 50 50 50 
1010 50 50 50 50 
1011 50 50 50 50 
1100 50 50 50 50 
1101 50 50 50 50 
1110 50 50 50 50 
im 50 50 50 50 

Table 8.2:   The policy agents are initiated with.   The utility of all behaviors in all 
conditions is equal, and initialized to the average of the minimum and maximum. 

8.5    Experimental Results and Evaluation 

The effectiveness of the proposed reinforcement functions was evaluated by testing 

three different types of reinforcement. The following three approaches were compared: 

1. A monolithic single-goal (puck delivery to the home region) 

reward function R(c,t) = RE d{c,t), 

and using the Q-learning algorithm, 

2. A heterogeneous reward function using multiple goals: R(t) = -RE(^), 

and using the reinforcement summation algorithm A(c, 6) = ]Ct=i R{ci ~t)-> 

3. A heterogeneous reward function using multiple goals R(t) = AE(^) 

and two progress estimator functions Rjj(c,t) and i?/(c, i), 

and using the reinforcement summation algorithm A(c, b) = J2t=i R{c-> 0- 

Data from sixty trias, twenty of each of the three strategies, were collected and 

averaged. The experiments were run on four different robots, and no significant 

robot-specific differences were found. Data from runs in which persistent sensor 

failures occurred were discarded. 
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R(t) = P(t) H(t) = E(t) R(t) = l(t) + H(t) + E(t) 

Figure 8-10: The performance of the three reinforcement strategies on learning to 
forage. The x-axis shows the three reinforcement strategies. The y-axis maps the 
percent of the correct policy the agents learned in 15 minutes, averaged over twenty 
trials. The error bars show the best and worst performance, and the histograms the 

average value. 

The data were based on values of A(c, 6), which were collected twice per minute 

during each learning experiment and once at the completion of the experiment, show- 

ing the final values. All experiments lasted 15 minutes. The 15 minute threshold was 

empirically derived, since the majority of the learning trials reached a steady state 

after about 10 minutes, except for a small number of rare conditions, as discussed 

below. 

8.5.1     Evaluation 

Evaluating performance of situated systems is notoriously difficult among other rea- 

sons because standard metrics for evaluating learning mechanisms, such as absolute 

time-to-convergence, do not directly apply. The amount of time required for a robot 

to discover the correct policy depends on the frequency of external events that trigger 

different states in its learning space. Additionally, noise and error can make certain 

parts of the policy fluctuate so waiting for a specific point of absolute convergence 

is not feasible. Instead, convergence is defined as a relative ordering of condition- 

behavior pairs. 

The performance of the three approaches is compared in Figure 8-10. The x-axis 
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shows the three reinforcement strategies. The y-axis maps the percent of the correct 

policy the agents learned, in 15 minutes, averaged over twenty trials, i.e., the ratio of 

correct condition-behavior pairings according to the optimal policy. The error bars 

show the best and worst performance, and the histograms the averaged value. 

Q-Learning Performance 

As described above, Q-learning was tested on the reduced learning space using the 

enumerated conditions and behaviors. In terms of reinforcement, Q-learning used a 

simplified version of the second algorithm, based on an impulse function delivering 

positive reinforcement for the single goal of dropping a puck in the home region. Given 

the nondeterminism of the world, and the uncertainty in sensing and state transitions, 

the single goal provides insufficient feedback for learning all aspects of foraging, in 

particular those that rely on accurate delayed credit assignment. The performance 

of Q-learning was vulnerable to interference from other robots, and declined most 

rapidly of the three approaches when tested on increased group sizes. 

Q performs poorly, but the partial policy it discovers is consistent over all trials 

and is made up of the few condition-behavior pairs that receive immediate and reliable 

reinforcement. Thus, the performance of Q indicates the difficulty of the learning task 

at least to the extent of demonstrating the immediately reinforced parts as the only 

parts it is capable of learning. 

It is important to note that Q is unable to take advantage of reward discounting 

because there is no particularly useful ordering to the sequence of behaviors an agent 

executes at any time in our domain, because the agent's behavior is dependent on 

the behavior of all of the others that interact with it during that time. These in- 

teractions are not individually modeled and learned in order to avoid a prohibitively 

large learning space as well as high sensing overhead. Consequently, the agent can- 

not deduce any structure about sequential behaviors from discounting, because at its 

representational level there is no structure. It needs to acquire a fully reactive policy 

which does not benefit from temporal discounting. 

Multiple Goal Performance 

The second learning strategy, utilizing reinforcement from multiple goals, outperforms 

Q because it detects the achievement of the subgoals on the way of the top-level goal of 

depositing pucks at home. However, it also suffers from the credit assignment problem 

in the cases of delayed reinforcement, since the nondeterministic environment with 

other other agents does not guarantee consistency of rewards over time. 

Furthermore, this strategy does not prevent thrashing, so certain behaviors are 
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active unnecessarily long. For example, safe-wandering and grasping are pursued 

persistently, at the expense of behaviors with delayed reinforcement, such as homing. 

The performance of heterogeneous reinforcement gives us another evaluation of the 

difficulty of the proposed learning task. With around 60% of the correct policy 

learned on the average, it demonstrates that additional structure is necessary to aid 

the learner in acquiring the rest. This structure is provided by progress estimators. 

Progress Estimator Performance 

The complete heterogeneous reinforcement and progress estimator approach maxi- 

mizes the use of all potentially available information for every condition and behav- 

ior. As predicted, thrashing is eliminated both in the case of learning the conditions 

for dispersion and homing because the progress estimator functions encourage ex- 

ploration. Furthermore, fortuitous rewards have less impact than in the alternative 

algorithms. The implicit domain knowledge is effectively spread over the reinforce- 

ment in order to guide the learning process continually, thus maximizing the utility 

of each of the learning trials and consequently speeding up the learning. 

The design of the foraging task using basic behaviors guarantees that its subgoals 

are independent of each other. Consequently, the associated reinforcement functions 

do not directly affect each other, and the simple ones we used are mutually consistent 

as they all contribute to a common high-level goal. Although in theory the more 

reinforcement is used the faster the learning should be, in practice noise and error in 

the different reinforcement sources could have the opposite effect. Our experiments 

demonstrated that a significant amount of noise and inconsistency in the different 

reinforcers and progress estimators did not adversely affect the learner. 

For example, each robot's estimate of its position and the proximity of others 

was frequently inaccurate due to radio transmission delays. These errors resulted 

in faulty homing and interference progress estimates. Nonetheless, all condition- 

behavior pairs that involved carrying a puck converged quickly. Furthermore, their 

A(c, b) values did not tend to oscillate. The fast rate of convergence for associations 

with behaviors that involved dispersion and homing result directly from the effects 

of the two progress estimators. When the two are removed, as in the second tested 

algorithm, the performance declines accordingly. 

Conversely, the set of conditions associated with finding pucks uniformly took 

longer to learn, since they had no direct progress measure to accelerate the learning. 

Furthermore, the learned values initially tended to oscillate, since the differences 

between the behavior alternatives were not great, again due to a lack of intermediate 

rewards. Empirical results show that noise and error-induced inconsistencies in the 

progress estimators did not significantly diminish the benefit of their use in this 
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Reinforcement Effect 

R(c,t) = REad(t) converges for at most 1/3 of the policy 

R(c,t) = RE(t) converges for at least 1/2 of the policy 

R{c,t) = RE(t) + Ri(t) + RH(t) converges for at least 2/3 of the policy 

Table 8.3: A qualitative summary of the performance for the three types of reinforce- 
ment used on the foraging task. 

domain. 

8.5.2     Further Evaluation 

Table 8.3 shows a coarse performance ordering of the three approaches. Although 

intuitive, this ordering is not particularly informative. A better way to analyze the 

approaches is to evaluate each part of the policy separately, thus measuring when 

and what each robot was learning. Table 8.4 illustrates the final state of a learner 

using heterogeneous reward functions and progress estimators. The table provides 

additional information for analysis. 

To capture the dynamics of the learning process, each condition-behavior pair 

was evaluated according to the following three criteria: 

1. number of trials required, 

2. correctness, 

3. stability. 

The number of trials was measured relative to a stable solution, whether the 

solution was optimal or not. The second criterion sought out incorrect (in terms 

of optimality) but stable solutions. Finally, the third criterion focused on unstable 

policies, looking for those in which the behavior orderings tended to fluctuate. 

Based on those criteria, some condition-behavior pairs proved to be much more 

difficult to learn than others. The most prominent source of difficulty was the delay in 

reinforcement, which had predictable results clearly demonstrated by the performance 

differences between the three strategies. Learning the conditions for safe-wandering 

was difficult as there was no available progress estimator, and the robot could be 

executing the correct behavior for a long while before reaching pucks and receiving 

reward. In the mean time it could be repeatedly interrupted by other activities, such 

as avoiding obstacles and intruders, as well as homing and resting at the onset of 

night-time. 
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Condition Behavior 

safe-wandering homing dispersion resting 

0000 100 45 40 35 

0001 45 100 35 45 

0010 100 40 45 30 

0011 30 45 40 100 

0100 55 100 40 35 

0101 65 100 35 40 

0110 100 45 65 30 

Olli 30 40 30 100 

1000 100 40 75 35 

1001 100 80 60 45 

1010 85 30 100 45 

1011 40 45 30 100 

1100 100 95 45 40 

1101 45 100 60 40 

1110 100 45 90 30 

1111 65 30 45 100 

Table 8.4: An example policy learned by one of the robots using heterogeneous reward 

functions and progress estimators. 

Another source of difficulty was rareness of occurrence of some combinations of 

conditions. In particular, the condition consisting of the onset of night-time while a 

robot is carrying a puck and avoiding another robot rarely occurred. Consequently, 

the correct mapping was difficult to learn since the robots did not get a chance to 

explore all behavior alternatives. This accounts for the incomplete policy even in the 

case of the most successful reinforcement strategy. 

The combination of positive and negative reinforcement pushes the learner out of 

any local maxima, but allows oscillations and instabilities in the ordering of the A(c, b) 

values in the table. Two of the conditions oscillated because the alternatives resulted 

in equally effective solutions. In situations when the robot is not carrying a puck 

and encounters an intruder, any motion away from the intruder will be beneficial and 

rewarded by the progress estimator i?/. Consequently, homing and safe-wandering 

are often as effective as dispersion. In contrast, if the robot is carrying a puck, then 

dispersion and homing are effective and rewarded by contributions of the Ri and RH 

progress estimators. As described earlier, it is the combination of the two estimators 

that speeds up exploration as well as minimizes fortuitous rewards. Only a specific 

progress measure that minimizes the travel time to the goal can eliminate this effect. 
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Such optimization is difficult in systems using largely local sensing and control and 

dealing with interference from other agents. Given those challenges, the policy the 

robots found was appropriate for the properties of their domain. 

8.5.3    Scaling 

We evaluated the three reinforcement alternatives on groups of three and four robots 

and found that interference was a detriment to all three. In general, the more robots 

were learning at the same time, the longer it took for each to converge. This was par- 

ticularly pronounced for condition-behavior pairs without directly associated progress 

estimators, such as those involved in the conditions that did not involve carrying a 

puck. 

The only behavior capable of reaping benefits from interference was dispersion, 

which was learned faster and more accurately in crowded situations. We have con- 

sidered adding a social behavior called yielding in order to minimize interference by 

having only one robot move at a time in crowded situations. Our previous results, 

described in section 4.5.2, showed that such "hierarchical" behavior had little effect 

on individual basic behaviors aggregation and dispersion. However, we believe yield- 

ing would be more effective in the case of foraging. Because of fixed home and puck 

locations, the task is more structured and can take advantage of rules that produce 

more structured motion. 

8.6    Discussion and Extensions 

8.6.1     Social Rules 

We have noted that a decline in performance of all of the algorithms was observed with 

the increased group size and the associated increased interference between agents. Al- 

though not surprising, this is an undesirable effect. In an ideal scenario, the presence 

of other agents would speed up rather than slow down individual learning. However, 

such synergy is only possible in societies where individuals benefit from each other's 

experience and interact according to mutually beneficial social rules. 

Our most recent work has addressed the problem of learning such social rules. 

This is a challenging learning problem since social rules do not necessarily have im- 

mediate or even delayed payoff to the individual but may only benefit the individual 

on average from having a global effect. Consequently, social rules involve some "al- 

truistic" behavior, even at the simplest of levels, such as yielding in traffic. Such 

behavior is difficult to learn with individualist reinforcement learning strategies. We 
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are currently working on an algorithm that utilizes the observation of neighboring 

agents1 behavior and received reinforcement in order to acquire and practice social 

behaviors (Mataric 1994). 

8.6.2 Transition Models 

The learning problem presented here, involving a collection of concurrently learning 

agents in a noisy and uncertain environment, was purposefully chosen for its com- 

plexity. The fact that a state transition model was not available to aid the learner 

presented one of the major challenges. 

As argued earlier, such models are not generally available, but partial models 

could be constructed empirically, either prior to or during the learning process. The 

implemented reinforcement functions take advantage of immediate information from 

the world to generate reinforcement. Thus, they would have an accelerating effect 

on any learning domain, regardless of whether a transition model is available. An 

interesting extension of this work would apply the described reinforcement approach 

to problems that involve incomplete and approximate state transition models in order 

to study the effects of combining immediate reinforcement with discounted future 

rewards commonly applied to RL problems. 

8.6.3 Heterogeneous Learning 

One of the key advantages of heterogeneous reinforcement is the possibility of learning 

multiple types of behaviors in parallel. Such concurrent multi-modal learning is 

biologically and pragmatically inspired, and has been an ongoing challenge in the 

learning community (Franklin k Selfridge 1990, Brooks k Mataric 1993). 

In our foraging task, basic behaviors were designed by hand and behavior selection 

was learned. However, basic behaviors themselves could be learned or optimized 

in parallel with learning behavior selection. For example, the agents could use a 

parameter learning scheme to optimize their grasping behaviors whenever in a puck- 

carrying state. In order to avoid extending the learner's state space and reverting 

to the traditional problems of monolithic learners, multi-modal learning would be 

implemented using multiple correlation mechanisms instead of a monolithic A(c, b) 

matrix. 
The described reinforcement techniques can be applied at every learning level. No 

explicit merging of learned policies is needed since the learning modules would be 

independent. 
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8.6.4 Structuring Learning 

One of the difficulties facing the learning community is the lack of structure that 

taxonomizes the existing learning methodologies and delineates their applicability. 

Consequently, the choice of methodology is often based on passing trends and dogma 

rather than on objective applicability and performance criteria. One of the goals of 

the learning work described in this thesis has been to introduce some structure into the 

popular methodology broadly characterized as reinforcement learning. By applying 

reinforcement learning to a novel and more complex domain than has been experi- 

mented with to date, we were able to establish its limitations for that domain, and 

propose a reformulation of the representation and reinforcement that makes learning 

in that domain both possible and efficient. 

By appropriately setting up the learning task, effective results were achieved from 

a single learning methodology. An interesting direction to pursue would be to deal 

with learning problems complex enough to require more than one learning strategy 

as a means of relating different techniques. 

8.6.5 Signal-to—Symbol Learning 

Signal-to-symbol learning encapsulates the entire learning process from the ground- 

ing of the agent's experiences in the world to the resulting comparatively high-level 

representations. To date, systems that have learned from low-level signals, such as 

sensory information, have either bypassed symbolic representations all together, or 

had them built-in by the designer. An the other end of the spectrum, symbolic high- 

level learning has not traditionally concerned itself with grounding in the physical 

world. However, for situated systems, which must make a connection between di- 

rect sensory experiences and high-level cognitive activities, symbol grounding is an 

important problem that must be addressed (Harnad 1990). 

Most work on situated agents to date has not dealt with what are considered 

to be highly cognitive tasks. However, even learning of "lower-level" capacities, 

such as complex motor behaviors, requires intermediate and increasingly abstract 

representations. The process of relabeling information into forms that can be used 

by other subsystems for achieving different goals is already a step in the direction of 

bridging the signal-to-symbol gap. 

The learning work presented here has been at a level that could use a simple map- 

ping between conditions and behaviors. Nonetheless, even the process of constructing 

the presented reusable behavior combinations requires some way of labeling the com- 

binations. As most other work, the learning strategy described here was able to use 

a built-in mapping to labeled behaviors. A more general solution to the problem is 
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desirable, and we hope to address it in future work. 

8.7    Summary 

The goal of the described learning work has been to bring to light some of the im- 

portant properties of situated domains, and their impact on reinforcement learning 

strategies. We have described why MDP models of agent-world interactions are not 

effective in the noisy multi-agent domain, how the traditional notions of state and 

action present an inappropriately low level of system description for control and learn- 

ing, and how delayed reinforcement is not sufficient for learning in our domain and 

other domains of similar level of complexity. 

We introduced a higher-level description of the learning system, based on condi- 

tions and behaviors, that greatly diminishes the learner's state space and results in 

more robust control. We also introduced a methodology for shaping reinforcement in 

order to take advantage of more information available to the agent. In our domain 

shaping was necessary given the complexity of the environment-agent and agent- 

agent interactions. The approach consists of two methods: one that partitions the 

learning task into natural subgoals (behaviors) and reinforces each separately, and 

one that employs progress estimators to generate more immediate feedback for the 

agent. 
The proposed formulation was evaluated on a group of physical robots learning to 

forage and was shown to be effective as well as superior to two alternatives. The ap- 

proach is general and compatible with the existing reinforcement learning algorithms, 

and should thus serve to make learning more efficient in a variety of situated domains 

and with a variety of methodologies. 
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Chapter 9 

Summary 

The aim of this thesis has been to gain insight into intelligent behavior by increas- 

ing the level of complexity of the systems being designed and studied. In contrast 

to many AI systems that have focused either on complex cognition situated in sim- 

ple worlds, or vice versa, the work described here has addressed situated, embodied 

agents coexisting and interacting in a complex domain (Figure 9-1). We hope that 

the methodologies and results presented here have extended the understanding of 

synthesis, analysis, and learning of group behavior. 

Selection of the appropriate representation level for control, planning, and learning 

is one of the motivating forces behind this work. We have proposed a methodology 

for using constraints in order to derive behaviors, control laws that guarantee the 

achievement and maintenance of goals. Furthermore, we described a methodology for 

selecting basic behaviors, a basis set of such behaviors to be used as a substrate for 

control and learning for a given agent and environment. 

We demonstrated these ideas on the problem of synthesizing coherent group be- 

havior in the domain of planar spatial interactions. We devised a basic behavior set 

and showed that it meets the defining criteria, including no mutual reducibility and 

simple combination. We then showed how basic behaviors and their conditions can 

be used as a substrate for learning. Furthermore, we described a methodology for 

shaping reinforcement by using heterogeneous reinforcement functions and progress 

estimators in order to make learning possible and more efficient in dynamic multi- 

agent domains. 

The main idea behind this work is the approach to combining constraints from 

the agent, such as its mechanical and sensory characteristics, and the constraints for 

the environment, such as the types of interactions and sensory information the agent 

can obtain, in order to construct constraint-based primitives for control.   At the 
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Figure 9-1: A family photo of the physical experimental agents used to demonstrate 
and verify the group behavior and learning work described in this thesis. 

sensory end we called these primitives conditions and at the action end we referred 

to them as behaviors. In both cases they are a clustering of constraints that provide 

an abstraction at a level that makes control and learning efficient. 

We have dealt with a complex multi-agent domain and a complex learning problem 

in order to fully confront the issues in selecting the right abstraction and representa- 

tion level for situated agents. The complexity of our chosen environment, combined 

with the requirement of acting in real time, enforced the necessity for using a repre- 

sentation level that was not so low as to be computationally intractable or so high as 

to remove the potential of novel behavior strategies to be designed or learned by the 

agents. 
This work is intended as a foundation in a continuing effort toward studying 

increasingly more complex behavior, and through it, more complex intelligence. The 

work on basic behaviors distills a general approach to control, planning, and learning. 

The work also brings to light some theoretically and empirically challenging problems 

and offers some effective solutions to situated learning. Future work should both 

analytically tighten and experimentally broaden our understanding of all those issues. 

The demonstrated results in group behavior and learning are meant as stepping stones 

toward studying increasingly complex social agents capable of more complex learning, 
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ultimately leading toward better understanding of biological intelligence. 
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Appendix A 

Q-learning 

Watkins (1989) introduced a family of methods he called Q-learning for solving 

Markov decision problems with incomplete information, through the use of delayed re- 

inforcement. The simplest version, called one-step Q-learning, is the most commonly 

used and is thus described below. 
Q-learning is based on a temporal differencing strategy that attempts to maximize 

Q(s, a) at each time step. Q{s, a) is the expected discounted reward of taking action 

a in the input state s. The Q values for all state-action pairs are stored in the Q table 

and updated at each time step. The utility E of a state is the maximum Q value of 

all actions that can be taken in that state. The Q value of doing an action in a state 

is defined as the sum of the immediate reward r and the utility E(s') of the next state 

s' according to the state transition function T, discounted by the parameter 7. 

Formally: 

s' *-T{s,a) 

E(s) = m&xaQ(s,a) 

Q(s7a) = r + -fE(s')70<-f<l 

Q values are updated by the following rule: 

Q(s, a) *- Q(s, a) + ß(r + 1E(s') - Q{s, a)) 

0</?<l 

An RL algorithm using Q-learning has the following form: 

154 



1. Initialize all Q(s,a); select s0- 

2. Do Forever: 

a. Observe the current world state s. 

b. Choose an action a that maximizes Q(s,a). 

c. Execute action a. 

d. Let r be the immediate reward for executing a in state s. 

e. Update Q(s,a) according to the rule above. 

Let the new state be s' <— T(s,a). 'i 

ß and 7 are the tunable learning parameters, ß determines the learning rate. 

ß = 1 disregards all history accumulated in the current Q value and resets Q to 

the sum of the received and expected reward at every time step, usually resulting in 

oscillations. 

7 is the discount factor for future reward. Ideally, 7 should be as close to 1 as 

possible so that the relevance of future reward is maximized. In deterministic worlds 

7 can be set to 1, but in the general case two algorithms with 7 = 1 cannot be 

compared since, in the limit, the expected future reinforcement of both will go to 

infinity. 

The choice of initial Q values can affect the speed of convergence since the farther 

they are from the optimal policy the longer it takes to converge. If initialized to O's in 

a problem set up to have a positive optimal policy, the algorithm will tend to converge 

to the first positive value, without exploring alternatives, so random actions must be 

added to guarantee that the entire action space is explored (Kaelbling 1990). Alter- 

natively, if the optimal policy can be roughly estimated, Q values can be initialized to 

be higher and decreased over time. However, Q is sensitive to the coupling between 

the initial values and the reinforcement function. If the reinforcement function is 

strictly positive and the Q table is initialized to values exceeding the optimal policy, 

the system will take longer to converge than if the reinforcement function contains 

some negative signals. 
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Appendix B 

Glossary 

adaptability the ability to cope with internal and external changes. 

agent an entity or computational process that senses its world and acts on it. 

arbitration the problem of coordinating the activity of multiple input behaviors in 

order to produce desired output behavior. 

basic behaviors building blocks for control, planning, and learning. 

basic behavior set a basis set of behaviors that are directly, or by combination, 

sufficient for reaching all goals of a system. The elements of the set are not 

mutually reducible. 

behavior a control law that achieves and/or maintains some goal. 

behavior conditions proper subsets of the state space necessary and sufficient for 

activating a behavior. 

collective behavior an observer-subjective definition of some spatial and/or tem- 

poral pattern of interactions between multiple agents. 

condition a predicate on sensor readings that maps into a proper subset of the state 

space. 

cooperation a form of interaction, usually based on communication. 

ensemble behavior observable global behavior of a group or collection of agents 

event a change in the agent's perceptual or condition vector. 

external state externally observable state of an agent. 
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fortuitous reward a reward received for an inappropriate behavior that happened 

to achieve the desired goal. 

group density the ratio of the sum of the agents' footprints and the size of available 

interaction space. 

direct communication an action with the sole purpose of transmitting information. 

directed communication communication aimed at a particular receiver or set of 

receivers. 

direct behavior combination a temporal overlap of two or more behaviors. More 

than one behavior is active at a time. Implemented with a summation operator. 

embodiment the state of being embodied, having a body with physical constraints 

and properties. 

explicit cooperation a set of interactions which involve exchanging information or 

performing actions in order to benefit another agent. 

footprint the sphere of an agent's its influence. 

implicit cooperation a form of interactions consisting of actions that are a part of 

the agent's own goal-achieving behavior, but may have effects in the world that 

help other agents achieve their goals. 

impulse reinforcement reinforcement delivered only when the agent reaches a sin- 

gle goal state. 

group a collection of size three or more. 

homogeneity the property of being situated in the same world, embodied with 

similar dynamics and executing identical control programs. 

heterogeneity the property of being different from another agent in terms of one's 

environment, embodiment, or control. 

interaction mutual influence on behavior. 

interference any influence that partially or completely blocks an agents' goal-driven 

behavior. 

multi-agent control generating the desired behavior for a multi-agent system. 

niche a habitat, a class of environments for which an agent is adapted. 
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non-directed communication communication not limited to a particular receiver 

or set of receivers; includes indirect and direct communication. 

multi-agent system a system consisting of at least two agents. 

policy a mapping of inputs, states, or conditions, to actions or behaviors. 

situatedness the property of being situated, of existing in some context, in an en- 

vironment which involves interaction dynamics. 

stigmergic communication communication based on modifications of the environ- 

ment rather than direct message passing. 

temporal behavior combination a temporal sequence of two or more behaviors. 

Only one behavior is active at a time. Implemented with a switching operator. 

thrashing repeated execution of one or more inappropriate behaviors. 
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